日期:2022-12-03 00:00:00
1、正方体 a-边长 S=6a2 ; V=a3
2、圆柱 r-底半径;h-高;C底面周长;S底底面积;S侧侧面积
3、球 r-半径 ;d-直径 V=4/3d2/6
4、过一点有且只有一条直线和已知直线垂直
5、两直线*行,内错角相等
6、两直线*行,同旁内角互补
7、推论三角形两边的差小于第三边
8、推论3三角形的一个外角大于任何一个和它不相邻的内角
9、角的*分线是到角的两边距离相等的所有点的集合
10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
11、推论1三个角都相等的三角形是等边三角形
12、四边形的外角和等于360°
13、*行四边形判定定理1两组对角分别相等的四边形是*行四边形
14、*行线等分线段定理如果一组*行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
15、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
16、*行线分线段成比例定理三条*行线截两条直线,所得的对应线段成比例
17、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
18、性质定理1相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比
19、圆的外部可以看作是圆心的距离大于半径的点的集合
20、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
21、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
22、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧
23、推论2圆的两条*行弦所夹的弧相等
24、圆是以圆心为对称中心的中心对称图形
25、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
26、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
27、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
28、推论1经过圆心且垂直于切线的直线必经过切点
29、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
30、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等
31、定理把圆分成n(n≥3):
32、正n边形的每个内角都等于(n-2)×180°/n
33、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
34、扇形面积公式:S扇形=n∏R/360=LR/2
35、(1)几何图形:我们把从实物中抽象出的各种图形称为几何图形。
36、直线,射线,线段
37、线段的性质
38、角
39、*行线
40、合理安排,保持清醒。
数学立体几何知识点 40句菁华扩展阅读
数学立体几何知识点 40句菁华(扩展1)
——数学知识点 100句菁华
1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、长方形和正方形是特殊的*行四边形。
5、①相同分母的分数相加、减:分母不变,只和分子相加、减。
6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
7、有理数加法的运算律:
8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
10、有理数中仍然有:乘积是1的两个数互为倒数。
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
12、圆方程
13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
14、从个位减起;
15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
16、哪一位上乘得的积满几十就向前进几。
17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
20、解方程;
21、除法各部分之间的关系:
22、乘法各部分的关系:
23、什么是名数?
24、什么是复名数?
25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
26、环形面积=大圆–小圆=πR2-πr2
27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
34、学生在动手操作中,可以画出并能计算出图形的周长。
35、概念和分类
36、基本规律
37、鸡兔同笼的解题思路
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合
41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
42、直角三角形斜边上的中线等于斜边上的一半
43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
44、*行四边形性质定理1 *行四边形的对角相等
45、*行四边形性质定理2 *行四边形的对边相等
46、推论 夹在两条*行线间的*行线段相等
47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形
48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比
52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
53、集合的中元素的三个特性:
54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
55、语言描述法:例:{不是直角三角形的三角形}
56、有余数的除法: 被除数=商×除数+余数
57、竖式:
58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。
61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.
62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
67、用字母表示数的写法
68、列方程解答应用题的步骤
69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
73、怎样找准分数应用题中单位“1”
74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)
75、奇数、偶数、质数、合数(正整数自然数)
76、忽视零向量致误
77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
78、单项式与多项式
79、指数
80、1柱、锥、台、球的结构特征
81、2空间几何体的三视图和直观图
82、2.直线、*面*行的判定及其性质
83、3直线、*面垂直的判定及其性质
84、3.1直线与*面垂直的判定
85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形
86、有理数和无理数统称实数.
87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.
88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
89、一个数与0相加,仍得这个数。
90、方程与方程组
91、一元二次方程的二次函数的关系
92、同角或等角的余角相等——余角=90-角度。
93、逆定理
94、矩形性质定理1
95、等腰梯形判定定理
96、判定定理3
97、性质定理3
98、圆的外部可以看作是圆心的距离大于半径的点的集合
99、切割线定理
100、扇形面积公式:S扇形=n兀R^2/360=LR/2
数学立体几何知识点 40句菁华(扩展2)
——数学知识点总结 40句菁华
1、面积、体积最(大)问题
2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。
3、不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。
4、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线
5、1柱、锥、台、球的结构特征
6、2空间几何体的三视图和直观图
7、3空间几何体的表面积与体积
8、1.2空间中直线与直线之间的位置关系
9、1.3—2.1.4空间中直线与*面、*面与*面之间的位置关系
10、2.1直线与*面*行的判定
11、2.2*面与*面*行的判定
12、定理:如果两个*面同时与第三个*面相交,那么它们的交线*行。
13、二面角的记法:二面角α-l-β或α-AB-β
14、定理:垂直于同一个*面的两条直线*行。
15、高一数学知识点总结:集合的分类(1)按元素属性分类,如点集,数集。
16、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直*分线
17、推论:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
18、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
19、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
20、①直线L和⊙O相交d﹤r
21、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
22、如果两个圆相切,那么切点一定在连心线上
23、定理:把圆分成n(n≥3):
24、定理:
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、弧长计算公式:L=n兀R/180
27、扇形面积公式:
28、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为k。
29、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)
30、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
31、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)
32、集合的表示方法:常用的有列举法、描述法和图文法
33、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象.
34、四边形中的动点问题:动点沿四边形的边运动,通过探究构成的新图形与原图形的全等或相似,得出它们的边或角的关系.
35、求出每段的解析式.
36、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
37、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
38、an与Sn关系不清致误
39、不等式恒成立问题致误
40、忽视基本不等式应用条件致误
数学立体几何知识点 40句菁华(扩展3)
——数学圆知识点总结 40句菁华
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、同圆或等圆的半径相等
4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线
6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
7、推论:经过切点且垂直于切线的直线必经过圆心
8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等
9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。
11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84
12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256
13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
14、圆的有关性质
15、不在同一直线上的三点确定一个圆。
16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
17、切线的性质定理圆的切线垂直于经过切点的半径
18、推论2经过切点且垂直于切线的直线必经过圆心
19、圆的外切四边形的两组对边的和相等外角等于内对角
20、正n边形的每个内角都等于n-2×180°/n
21、正三角形面积√3a/4 a表示边长
22、内公切线长= d-R-r外公切线长= d-R+r
23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径
25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr
26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。
27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
28、圆的周长C=2d
29、圆锥侧面积S=rl
30、圆的标准方程
31、圆的一般方程
32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1
33、圆的周长C=2πr=πd
34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
35、①直线L和⊙O相交 d
36、推论2 经过切点且垂直于切线的直线必经过圆心
37、圆的外切四边形的两组对边的和相等 外角等于内对角
38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
数学立体几何知识点 40句菁华(扩展4)
——数学必修一知识点 50句菁华
1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
2、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
3、集合的表示:{ … } 如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}
4、列举法:{a,b,c……}
5、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
6、不含任何元素的集合叫做空集,记为Φ
7、函数图象知识归纳
8、映射
9、待定系数法
10、换元法
11、函数最大(小)值(定义见课本p36页)
12、集合的表示方法:常用的有列举法、描述法和图文法
13、常用数集:N,Z,Q,R,N_
14、真子集:AB且存在x0∈B但x0A;记为AB(或,且)
15、交集:A∩B={x|x∈A且x∈B}
16、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。
17、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是
18、点的集合M={(x,y)|xy≥0}是指
19、已知集合A={x|},若A∩R=,则实数m的取值范围是
20、复合函数的有关问题
21、判断对应是否为映射时,抓住两点:
22、先看笔记后做作业。
23、做题之后加强反思。
24、科学的听课方式
25、(xfy有2个零点0)(xf有两个不等实根;0)(xfy有1个零点0)(xf有两个相等实根;0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.
26、二分法
27、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理
28、的解集是(1,3),那么的解集是什么?
29、★★两种题型:
30、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.
31、函数零点的求法:
32、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.
33、函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。
34、导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。
35、Venn图:
36、子集个数:
37、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
38、全集与补集
39、函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;
40、应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:
41、如何求复合函数的定义域?
42、反函数的性质有哪些?
43、如何利用导数判断函数的单调性?
44、抛物线有一个顶点P,坐标为
45、二次项系数a决定抛物线的开口方向和大小。
46、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
47、“相等”关系:A=B(5≥5,且5≤5,则5=5)
48、函数定义域、值域求法综合
49、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。
50、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.
数学立体几何知识点 40句菁华(扩展5)
——六年级下册数学知识点归纳 40句菁华
1、常见的圆柱圆锥解决问题:
2、正方形判定定理
3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。
4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
5、整十整百数乘一位数
6、比较大小的方法:
7、多位数的写法
8、多位数的大小比较:
9、“万”“亿”作单位的数:
10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
11、按比例分配:
12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
14、判断这两个量的比值是否一定,比值一定就成正比例关系;
15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)
16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
17、以长方形的宽为底面周长,长为高。
18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
21、圆锥的特征:
22、圆锥的相关计算公式:
23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下
25、摄氏度
26、(1)圆柱周围的面叫做侧面。
27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。
28、温馨提示:圆柱的底面是圆形,面不是椭圆。
29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch
30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
32、一个圆柱占空间的大小,叫做这个圆柱的体积。
33、圆锥是由一个底面和一个侧面两部分组成。
34、温馨提示:
35、百分数。
36、统计。
37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
38、两条*行线之间的距离处处相等。
39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?
40、统计表制作步骤:
数学立体几何知识点 40句菁华(扩展6)
——数学分析知识点总结 40句菁华
1、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
3、角
4、内错角相等,两直线*行
5、两直线*行,内错角相等
6、推论
7、圆是定点的距离等于定长的点的集合
8、圆是以圆心为对称中心的中心对称图形
9、*面向量:初等运算、坐标运算、数量积及其应用
10、复数:复数的概念与运算
11、数列的通项公式
12、有理数:①整数→正整数,0,负整数;
13、同角或等角的补角相等
14、过一点有且只有一条直线和已知直线垂直
15、边边边公理(SSS):有三边对应相等的两个三角形全等
16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等
17、角的*分线是到角的两边距离相等的所有点的集合
18、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
19、*行四边形判定定理3
20、矩形判定定理2
21、菱形性质定理1
22、菱形性质定理2
23、菱形判定定理2
24、等腰梯形性质定理
25、等腰梯形的两条对角线相等
26、对角线相等的梯形是等腰梯形
27、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d
28、*行于三角形的一边,并且和其他两边相交的直线,
29、相似三角形判定定理1
30、判定定理2
31、性质定理3
32、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
33、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
34、到已知角的两边距离相等的点的轨迹,是这个角的*分线
35、切线的判定定理
36、弦切角定理
37、①两圆外离
38、元素的确定性;
39、集合的表示方法:列举法与描述法。
40、有限集含有有限个元素的集合
初中数学知识点总结 100句菁华数学知识点 100句菁华中考数学知识点 60句菁华数学七年级知识点 60句菁华中考数学知识点 50句菁华初中数学知识点总结 50句菁华初中数学全册知识点 50句菁华初一数学上册知识点总结 50句菁华初中数学常考的知识点 50句菁华小学数学知识点 50句菁华数学七年级知识点 50句菁华数学知识点 50句菁华数学必修一知识点 50句菁华数学的知识点总结 50句菁华高等数学知识点总结 50句菁华高中数学知识点总结 50句菁华初中数学重要知识点总结 40句菁华初一数学知识点归纳 40句菁华数学五年级知识点 40句菁华数学知识点总结 40句菁华数学分析知识点的总结 40句菁华数学初中全部重要知识点总结 40句菁华数学圆知识点总结 40句菁华数学初中知识点总结 40句菁华数学中考圆的知识点 40句菁华数学分析知识点总结 40句菁华高三数学知识点总结 40句菁华高二数学知识点归纳 40句菁华高考数学知识点总结 40句菁华
描写大海的句子 200句菁华三八妇女节说说 100句菁华几米语录 100句菁华情侣的说说 100句菁华表白的句子给喜欢的人 100句菁华教师节对老师说的祝福语 60句菁华母亲节暖心的祝福语短信 60句菁华节约用水的名言警句 60句菁华2020年精选元旦新年贺卡祝福语QQ汇总 50句菁华六一儿童节幽默的祝福语 50句菁华圣诞节祝福话语 50句菁华在乎一个人的说说 50句菁华微笑正能量的句子 50句菁华描写人物外貌的句子 50句菁华朋友祝福寄语 50句菁华祝福学生高考成功的寄语 50句菁华立冬祝福问候语 50句菁华端午节祝福语送家人 50句菁华
经典除夕祝福语 50句菁华给母亲的母亲节祝福语 50句菁华适合发朋友圈加油努力的句子 50句菁华乔迁大喜的祝福语 40句菁华五一劳动节对联 40句菁华元旦节温暖文案 40句菁华六一儿童节希望宝宝好的祝福语 40句菁华关于无助的心情的句子 40句菁华冬至适合发朋友圈文案 40句菁华初二学生学期班主任评语 40句菁华大学升学宴祝贺词 40句菁华描写冬天树枝的句子 40句菁华搞笑教师节祝福语 40句菁华母亲60岁生日祝福语 40句菁华经典早安晚安祝福语 40句菁华100条巴菲特经典语录 30句菁华2020祝福词 30句菁华2020致自己走心朋友圈说说 30句菁华