位置 > 首页 > 句子 >

数学中考圆的知识点 40句菁华

日期:2022-12-03 00:00:00

1、过三点的圆

2、垂于直径半直线必为圆的的切线

3、圆切线垂的直过切于点半径

4、圆的轴对称性

5、圆周角定理

6、切线的判定定理

7、切线长

8、圆和圆位置关系的性质与判定

9、正多边形的中心

10、正多边形的半径

11、正多边形的轴对称性

12、正多边形的中心对称性

13、弧长公式

14、圆锥的侧面积

15、圆中心的一点叫圆心,用O表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。

16、圆有无数条半径,有无数条直径。

17、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

18、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。

19、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

20、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

21、垂径定理垂直于弦的直径*分这条弦并且*分弦所对的两条弧

22、圆是定点的距离等于定长的点的集合

23、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线

24、切线的性质定理圆的切线垂直于经过切点的半径

25、推论1经过圆心且垂直于切线的直线必经过切点

26、推论2经过切点且垂直于切线的直线必经过圆心

27、圆的外切四边形的两组对边的和相等外角等于内对角

28、①两圆外离d>R+r

29、正n边形的面积Sn=pnrn/2 p表示正n边形的周长

30、定理一条弧所对的圆周角等于它所对的圆心角的一半

31、解决疑难。这是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神,做错的作业再做一遍。对错误的地方没弄清楚要反复思考,实在解决不了的要请教老师和同学,并经常把容易错的地方拿来复习强化,作适当的重复性练习,把从老师、同学处获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。

32、课外学习。课外学习是课内学习的补充和继续,包括阅读课外书籍与报刊,参加学科竞赛与讲座,走访高年级同学或老师交流学习心得等。它不仅能丰富学生的文化科学知识,加深和巩固课内所学的知识,而且能够满足和发展学生的兴趣爱好,培养独立学习和工作的能力,激发求知欲与学习热情。

33、到角两边距离相等的点的轨迹是:角的*分线;

34、圆心确定圆的位置,半径确定圆的大小。

35、圆的周长公式:C=πd或C=2πr

36、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形面积=长×宽,所以圆的面积=πr×r=πr2

37、圆的面积公式:S=πr2或者S=π(d÷2)2或者S=π(C÷π÷2)2

38、当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小;当长方形,正方形,圆的面积相等时,长方形的周长最大,圆的周长最小。

39、有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。有2条对称轴的图形是:长方形有3条对称轴的图形是:等边三角形有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。

40、直径所在的直线是圆的对称轴。


数学中考圆的知识点 40句菁华扩展阅读


数学中考圆的知识点 40句菁华(扩展1)

——中考数学知识点 60句菁华

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


数学中考圆的知识点 40句菁华(扩展2)

——中考数学知识点 50句菁华

1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

2、反比例函数的图象在第一、三象限

3、cs30°=。

4、同弧所对的圆周角等于圆心角的一半。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

8、单项式与多项式

9、指数

10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

11、乘法法则:⑴单×单;⑵单×多;⑶多×多。

12、乘法公式:(正、逆用)

13、线段的中点及表示

14、互为余角、互为补角及表示方法

15、分类:

16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法

17、定义:a>b、a

18、一元一次不等式的解、解一元一次不等式

19、对应线段…;2.对应周长…;3.对应面积…。

20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

21、画函数图象:⑴列表;⑵描点;⑶连线。

22、特殊角的三角函数值:

23、依据:①边的关系:

24、俯、仰角:2.方位角、象限角:3.坡度:

25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

26、圆的定义(两种)

27、圆面积公式

28、弧长公式

29、圆柱、圆锥的侧面展开图及相关计算

30、作三角形的外接圆、内切圆

31、作半径

32、科学的听课方式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、规律方法总结:

35、k,b与函数图像所在象限:

36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

37、用待定系数法求二次函数的解析式

38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

39、见直径往往作直径上的'圆周角

40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

45、梯形面积公式推导:旋转

46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

47、重心到三角形3个顶点距离的*方和最小。

48、直角坐标系中,点A(3,0)在y轴上。

49、反比例函数的图象在第一、三象限。

50、cos60+ sin30= 1.


数学中考圆的知识点 40句菁华(扩展3)

——数学圆知识点总结 40句菁华

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、同圆或等圆的半径相等

4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

7、推论:经过切点且垂直于切线的直线必经过圆心

8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

14、圆的有关性质

15、不在同一直线上的三点确定一个圆。

16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、圆的外切四边形的两组对边的和相等外角等于内对角

20、正n边形的每个内角都等于n-2×180°/n

21、正三角形面积√3a/4 a表示边长

22、内公切线长= d-R-r外公切线长= d-R+r

23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径

25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr

26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。

27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

28、圆的周长C=2d

29、圆锥侧面积S=rl

30、圆的标准方程

31、圆的一般方程

32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

33、圆的周长C=2πr=πd

34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

35、①直线L和⊙O相交 d

36、推论2 经过切点且垂直于切线的直线必经过圆心

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r


数学中考圆的知识点 40句菁华(扩展4)

——初中数学知识点总结 100句菁华

1、整式与分式

2、解一元二次方程的步骤:

3、韦达定理

4、如果两条直线都和第三条直线*行,这两条直线也互相*行

5、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

6、定理2

7、直角三角形斜边上的中线等于斜边上的一半

8、勾股定理

9、勾股定理的逆定理

10、四边形的外角和等于360°

11、*行四边形判定定理1

12、*行四边形判定定理3

13、矩形判定定理2

14、菱形面积=对角线乘积的一半,即S=(a×b)÷2

15、正方形性质定理1

16、三角形中位线定理

17、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

18、混合运算法则:先乘方,后乘除,最后加减。

19、性质定理1

20、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

21、性质定理3

22、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

23、圆是定点的距离等于定长的点的集合

24、圆的外部可以看作是圆心的距离大于半径的点的集合

25、同圆或等圆的半径相等

26、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

28、添括号法则

29、垂径定理

30、圆是以圆心为对称中心的中心对称图形

31、解一元一次方程的一般步骤:

32、普查与抽样调查

33、切割线定理

34、有关数轴

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、倒数:乘积为1的两个数互为倒数,0没有倒数。

37、内公切线长=d-(R-r)

38、三角形的分类

39、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

40、三角形内角和定理:三角形三个内角的和等于180°

41、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

42、判定:

43、性质:矩形的四个角都是直角,矩形的对角线相等

44、s菱=争6(n、6分别为对角线长)

45、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

46、2整式的加减

47、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

48、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

49、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

50、多边形对角线的条数:

51、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

52、定理:相交两圆的连心线垂直*分两圆的公共弦

53、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

54、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

55、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

56、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

57、圆的有关性质

58、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

59、直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)

60、由绝对值的定义可知:

61、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

62、有理数中仍然有:乘积是1的两个数互为倒数。

63、对角线相等的菱形;

64、直线外一点与直线上各点连接的所有线段中,垂线段最短。

65、同位角相等,两直线*行。

66、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

67、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

68、推论2有一个角等于60°的等腰三角形是等边三角形。

69、多边形内角和定理n边形的内角的和等于(n-2)×180°。

70、推论夹在两条*行线间的*行线段相等。

71、*行四边形判定定理2两组对边分别相等的四边形是*行四边形。

72、矩形判定定理2对角线相等的*行四边形是矩形。

73、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

74、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。

75、定理1关于中心对称的两个图形是全等的

76、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

77、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。

78、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半。

79、(2)合比性质:

80、(3)等比性质:

81、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

82、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

83、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

84、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

85、①两圆外离d﹥R+r。

86、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。

87、换元法

88、面积法

89、运算顺序:A、高级运算到低级运算;B、(同级运算)从“左”到“右”(如5÷×5);C、(有括号时)由“小”到“中”到“大”。

90、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

91、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

92、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)

93、两条*行线被第三条直线所截,内错角相等。(两直线*行,内错角相等)

94、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

95、*移的性质

96、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。

97、X轴:水*的数轴叫X轴或横轴。向右方向为正方向。

98、原点:两个数轴的交点叫做*面直角坐标系的原点。

99、点到轴及原点的距离:

100、不等式的解法:


数学中考圆的知识点 40句菁华(扩展5)

——中考物理重点知识点总结 60句菁华

1、电能表读数是两次读数之差,最后一位是小数。

2、计算电能可以用KW和h计算,最后再用1KWh=3、×10J换算。

3、电功率定义式:

4、运动图像

5、液化:物质从气态变成液态的过程叫液化,液化要放热。

6、光在真空中传播速度最大,为3×10m/s

7、光路图注意事项:1)要借助工具作图;2)是实际光线画实现,不是实际光线画虚线;3)光线要带箭头,光线与光线暗之间要连接好,不要断开;4)做光的反射或光的折射光路图时用现在入射点做出法线,然后根据反射角与入射角或折射角与入射角的关系作出光线;5)光发生折射时,处于空气中的那个角较;6)*行主光轴的光线经凹透镜发散后的光线的反响延长线一定小脚在虚焦点上;7)*面镜成像时,反射光线的反响延长线一定经过镜后的像;8)画透镜时,一定要在镜面内画上斜线作阴影表示实心。

8、长度的单位还有千米、分米、厘米、毫米、微米

9、*均速度:在变速运动中,用总路程除以所用的时间可得物体在这段路程中的快慢程度,这就是*均速度。

10、物体的质量测量工具:实验室常用天*测量,常用的天*有托盘天*和物理天*。

11、力的示意图:用一根带箭头的线段表示力。具体画法:1)用线段的起点表示力的作用点;2)延力的方向划一条带箭头的线段,箭头的方向表示力的方向;3)若在同一个图中有几个力,则力越大,线段越长。

12、压力:垂直作用在物体表面上的力叫压力。

13、大气压强产生的原因:空气受到重力作用而产生的,大气压强随高度的增大而减小。

14、测定大气压的仪器:气压计,常见气压计有水印气压计和无液气压计(金属盒气压计)。

15、阿基米德原理公式:F=G=ρgV

16、压力差法:F=F-F

17、物体在不受力或受到*衡力作用下都会保持静止状态或匀速直线运动状态。

18、动力:使杠杆转动的力【F】

19、杠杆*衡条件:动力×动力臂=阻力×阻力臂

20、势能分为重力势能和弹性势能。

21、自然界中可供人类大量利用的机械能有风能和水能。

22、比热容的单位是焦耳/(千克·℃),读作焦耳每千克摄氏度。

23、热值【q】:1kg的某燃料完全燃烧所放出的热量。单位:焦耳/千克

24、燃料燃烧放出的热量:Q放=qm

25、电源是把其他形式的能转化为电能。

26、断路:断开的电路。

27、电阻串联特点:

28、【W】单位:国际单位:焦耳;常用单位:千瓦时

29、计算公式:W=UIt

30、实际功率【P】:用电器在实际电压下的功率。

31、当U>U时,P>P;灯很亮易烧坏

32、所有家用电器和插座都是并联的,开关则要与它所控制的用电器并联。

33、磁场方向:在磁场中的某一点,小磁针静止时N极所指的方向就是该点的磁场方向。

34、交流电:周期性改变电路方向的电流。

35、直流电:电流方向不变的电流。

36、*是利用轻核的聚变释放能量。

37、正确理解燃烧值的内涵

38、提高炉子的效率既能节约燃料,又能减小对环境的污染,我们大家都要注意节约燃料。

39、太阳光是由红、橙、黄、绿、蓝、靛、紫组成的。

40、作光路图注意事项:

41、伏安法测电阻原理:R=U/I伏安法测电功率原理:P=UI。

42、“220V100W”的灯泡比“220V40W”的灯泡电阻小,灯丝粗。

43、地球是一个大磁体,地磁南极在地理北极附近。

44、电磁继电器的特点:通电时有磁性,断电时无磁性(自动控制)。

45、电动机是根据通电导体在磁场中要受到力的作用这一现象制成的,电能转化为机械能。

46、两个力的合力可能大于其中一个力,可能小于其中一个力,可能等于其中一个力。

47、连通器两侧液面相*的条件:①同一液体②液体静止。

48、流体流速大的地方压强小(飞机起飞就是利用这一原理)。

49、有用功多,机械效率高(错),额外功少,机械效率高(错),有用功在总功中所占的比例大,机械效率高(对)。

50、从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循*行四边形定则。重点是判断合运动和分运动,这里分两种情况介绍。

51、运动的性质和轨迹

52、明确该规律与有关规律间的区别和联系。

53、汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)

54、纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt

55、机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2

56、重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP

57、分子热运动

58、两种温标

59、声速公式:v= ;s——路程,v——速度,t——时间

60、人耳听到声音的条件:a、要有声源(发声体);b、要有传播的介质;c、不能离声源太远;


数学中考圆的知识点 40句菁华(扩展6)

——初中数学知识点总结 50句菁华

1、实数

2、整式与分式

3、一元二次方程根的情况

4、函数

5、全等三角形的对应边、对应角相等

6、勾股定理的逆定理

7、*行四边形判定定理1

8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

10、点、线、面、体

11、圆的内部可以看作是圆心的距离小于半径的点的集合

12、线段的中点:

13、一元一次方程

14、解一元一次方程的一般步骤:

15、圆的外切四边形的两组对边的和相等

16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

17、乘积的符号的确定

18、定义:有一组邻边相等的*行四边形叫做菱形

19、推论2经过切点且垂直于切线的直线必经过圆心

20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

25、人们通常用一条直线上的点表示数,这条直线叫做数轴。

26、两个负数,绝对值大的反而小。

27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

28、有理数中仍然有:乘积是1的两个数互为倒数。

29、过两点有且只有一条直线。

30、同位角相等,两直线*行。

31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

32、定理四边形的内角和等于360°。

33、四边形的外角和等于360°。

34、推论任意多边的外角和等于360°。

35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。

38、定理1关于中心对称的两个图形是全等的

39、等腰梯形的两条对角线相等。

40、(2)合比性质:

41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。

42、圆是定点的距离等于定长的点的集合。

43、①两圆外离d﹥R+r。

44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。

46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c

50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。


数学中考圆的知识点 40句菁华(扩展7)

——初中数学常考的知识点 50句菁华

1、判定:

2、菱形的定义 :有一组邻边相等的*行四边形叫做菱形。

3、菱形的性质:

4、整式:整式为单项式和多项式的统称。

5、同底数幂是指底数相同的幂。

6、幂的乘方法则:幂的乘方,底数不变,指数相乘。

7、积的乘方:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。

8、同底数幂的除法:同底数幂相除,底数不变,指数相减。

9、互斥事件:不可能同时发生的两个事件叫做互斥事件。

10、必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。

11、列方程解应用题的常用公式:

12、同弧所对的(在弧的同侧)圆内部角其次是圆周角,最小的是圆外角。

13、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

14、正数大于0,0大于负数,正数大于负数。

15、有理数的加法中,两个数相加,交换交换加数的位置,和不变。

16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。

17、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

18、一元二次方程的解法

19、过两点有且只有一条直线

20、两点之间线段最短

21、同角或等角的补角相等——补角=180-角度。

22、同角或等角的余角相等——余角=90-角度。

23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

24、同位角相等,两直线*行

25、内错角相等,两直线*行

26、推论3

27、全等三角形的对应边、对应角相等

28、定理1

29、等腰三角形的判定定理

30、逆定理

31、*行四边形判定定理4

32、矩形性质定理1

33、矩形判定定理1

34、菱形性质定理2

35、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

36、等腰梯形性质定理

37、*行线等分线段定理

38、三角形中位线定理

39、梯形中位线定理

40、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

41、性质定理1

42、圆是定点的距离等于定长的点的集合

43、圆的外部可以看作是圆心的距离大于半径的点的集合

44、圆是以圆心为对称中心的中心对称图形

45、解一元一次方程的一般步骤

46、解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

47、圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象

48、线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象

49、三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系

50、圆中的动点问题:动点沿圆周运动,探究构成的新图形的边角等关系


数学中考圆的知识点 40句菁华(扩展8)

——高中数学知识点总结 50句菁华

1、函数的极限:

2、在的导数。

3、函数在点处的导数的几何意义:

4、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

5、充要条件。

6、互为反函数的函数图象间的关系;

7、对数;

8、等差数列前n项和公式;

9、角的概念的推广;

10、两角和与差的正弦、余弦、正切;

11、函数的奇偶性;

12、函数的图象;

13、斜三角形解法举例。

14、向量;

15、实数与向量的积;

16、*面向量的坐标表示;

17、线段的定比分点;

18、不等式;

19、抛物线及其标准方程;

20、直线和*面*行的判定与性质;

21、直线和*面垂直的判定与性质;

22、三垂线定理及其逆定理;

23、异面直线的公垂线;

24、*面的法向量;

25、直线和*面所成的角;

26、向量在*面内的射影;

27、二面角及其*面角;

28、两个*面垂直的判定和性质;

29、多面体;

30、棱柱;

31、排列数公式;

32、函数图像(或方程曲线的对称性)

33、把答案盖住看例题

34、列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}。

35、利用导数研究多项式函数单调性的一般步骤

36、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

37、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

38、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

39、一条弧所对的圆周角等于它所对的圆心角的一半。

40、等比数列{an}中,若m+n=p+q,则

41、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

42、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

43、“包含”关系—子集注意:A?B有两种可能

44、构成函数的三要素:定义域、对应关系和值域

45、棱锥S—h—高V=Sh/3。

46、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。

47、空心圆柱R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)。

48、区间的概念:设a,bR,且a

49、等比数列的有关公式

50、等比数列{an}的常用性质

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1