位置 > 首页 > 句子 >

初一数学知识点归纳 40句菁华

日期:2022-12-03 00:00:00

1、单项式:;单独的一个数或一个字母也是单项式

2、单项式的次数:;

3、多项式的次数:;

4、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项

5、系数化为1

6、检验

7、二元一次方程组

8、列方程解应用题的一般步骤:

9、一些实际问题中的规律和等量关系:

10、对角线互相垂直的*行四边形是菱形。

11、性质:

12、正数(positionnumber):大于0的数叫做正数。

13、相反数(oppositenumber):绝对值相等,只有负号不同的两个数叫做互为相反数。

14、有理数加法法则

15、有理数乘法法则

16、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

17、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即010),n是正整数)。

18、命题:判断一件事情的语句叫命题。

19、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

20、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

21、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

22、多边形:在*面内,由一些线段首尾顺次相接组成的图形叫做多边形。

23、多边形的内角:多边形相邻两边组成的角叫做它的内角。

24、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为*面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

25、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

26、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,所有字母指数和叫单项式的次数。

27、数轴:数轴是规定了原点、正方向、单位长度的一条直线.

28、2.1三角形的内角

29、3.1多边形

30、绝对值 |a|0.

31、倒数 (1)0没有倒数 (2)乘积是1的两个数互为倒数,a、b互为倒数。

32、立方根

33、正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小;

34、无理数的比较大小:

35、加法

36、乘法

37、乘方与开方

38、有理数比大小:

39、3 有理数的加减法

40、1 多姿多彩的图形


初一数学知识点归纳 40句菁华扩展阅读


初一数学知识点归纳 40句菁华(扩展1)

——数学知识点 100句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


初一数学知识点归纳 40句菁华(扩展2)

——初一数学上册知识点总结 50句菁华

1、点、线、面、体

2、线段、射线、直线

3、线段的性质

4、角的表示

5、多边形:

6、方程

7、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net).

8、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

9、连接两点间的线段的长度,叫做这两点的距离(distance).

10、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

11、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

12、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

13、检:检验所求的解是否符合题意.

14、0表示的意义

15、单项式的系数:

16、单项式的次数:

17、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

18、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

19、一元一次不等式与一次函数的综合运用:

20、解不等式的诀窍

21、解不等式组的口诀

22、同角或等角的补角相等

23、直线外一点与直线上各点连接的所有线段中,垂线段最短

24、如果两条直线都和第三条直线*行,这两条直线也互相*行

25、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

26、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

27、直角三角形斜边上的中线等于斜边上的一半

28、定理 线段垂直*分线上的点和这条线段两个端点的距离相等 ?

29、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

30、零指数与负指数公式:

31、配方:

32、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

33、判断三条线段能否组成三角形:

34、第三边取值范围:

35、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

36、培养学生获取信息,分析问题,处理问题的能力。

37、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

38、等式的性质:

39、只有符号不同的两个数称互为相反数。

40、左边第一个非零的数字起,所有的数字都是有效数字。

41、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

42、2 有理数

43、系数:;

44、多项式:;

45、去分母

46、去括号

47、系数化为1

48、一些实际问题中的规律和等量关系:

49、同号两数相加,取相同的符号,并把绝对值相加;

50、2.1*行线


初一数学知识点归纳 40句菁华(扩展3)

——高二数学知识点归纳 40句菁华

1、数列的前n项和公式Sn:

2、等差数列的前n项和公式:Sn= Sn= Sn=

3、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

4、裂项法求和:如an=1/n(n+1)

5、在等差数列 中,有关Sn 的最值问题--常用邻项变号法求解:

6、主要思想与方法:

7、*面与*面

8、不等式证明的依据

9、逻辑连结词;

10、映射;

11、函数;

12、互为反函数的函数图象间的关系;

13、指数概念的扩充;

14、指数函数;

15、对数函数。

16、数列;

17、任意角的三角函数;

18、正弦函数、余弦函数的图象和性质;

19、周期函数;

20、正切函数的图象和性质;

21、斜三角形解法举例。

22、线段的定比分点;

23、不等式的基本性质;

24、直线的倾斜角和斜率;

25、曲线与方程的概念;

26、由已知条件列出曲线方程;

27、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

28、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

29、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

30、直线被圆锥曲线截得的弦长公式:

31、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

32、导数的定义:在点处的导数记作.

33、用导数研究函数的最值

34、生活中常见的函数优化问题

35、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

36、随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

37、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

38、三角形三角关系:A+B+C=180°;C=180°-(A+B);

39、正弦定理的变形公式:

40、,


初一数学知识点归纳 40句菁华(扩展4)

——五年级上册数学知识点 60句菁华

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、构建初步的空间想象力;

7、多边形面积的计算。

8、计算小数加法先把小数点对齐,再把相同数位上的数相加

9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

10、用计算器来验算

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、构建空间想象力:

13、①含有未知数的等式称为方程。

14、*行四边形面积=底×高字母公式:s=ah

15、分割法;

16、画垂线时用实线画。

17、*行四边形面积=底×高(s*=ah)

18、三角形高=面积×2÷底 h = 2 S ÷ a

19、运算定律和性质:

20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

21、(关于“大约)应用题:

22、圆柱的侧面积=底面圆的周长×高:S=ch。

23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。

24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

25、相邻两个质量单位进率是1000。

26、圆的面积=圆周率×半径×半径:s=πr2。

27、*行四边形的面积=底×高S=ah

28、正方体的表面积=棱长×棱长×6公式:S=6a2

29、镜子内外的左右方向是相反的。

30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

32、5×1.8 就是求 1.5 的 1.8 倍是多少。

33、所有的方程都是等式,但等式不一定都是方程。

34、方程的检验过程:方程左边=……

35、身份证码:18位

36、长方形和正方形是特殊的*行四边形。

37、解方程。

38、求一个数的近似数:

39、分母:表示*均分的份数。分子:表示取出的份数。

40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。

42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

43、含有未知数的等式是方程。

44、求方程中未知数的过程,叫做解方程。

45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能

46、1992所有的质因数的和是( 88 )。

47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。

49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。

50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

55、有些事件的发生是确定的,有些是不确定的。 可能

56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

57、正方形里最大的圆。两者联系:边长=直径

58、长方形里最大的圆。两者联系:宽=直径

59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


初一数学知识点归纳 40句菁华(扩展5)

——生物知识点归纳 60句菁华

1、临时装片的制作和观察

2、细胞的生活需要物质和能量。细胞膜控制物质的进出;植物细胞质中的能量转换器是叶绿体和线粒体;特有的能量转换器叶绿体,细胞核是遗传信息库,总之,细胞是物质、能量、信息的统一体。细胞是生命活动的基本结构和功能单位。

3、只有一个细胞的生物体

4、病毒的形态结构和生命活动的特点

5、生物对环境的适应举例:荒漠中的骆驼,尿液非常少;骆驼刺地下根比地上部分长很多;寒冷海域中的海豹,胸部皮下脂肪厚;旗形树等。

6、无性生殖的后代、个体之间十分相像,这是因为他们具有完全相同的遗传物质。

7、成对的染色体形态大小相似,不成对的染色体形态大小有较大区别。

8、人的体细胞中染色体为23对,也就包含了46个DNA。

9、核膜:双层膜,把核内物质与细胞质分开。

10、液泡:单层膜,成熟的植物有中央大液泡。功能:贮藏(营养、色素等)、保持细胞形态

11、神经系统的组成:脑、脊髓和它们发出的神经

12、、垂体:分泌生长激素.生长激素:促进生长,幼年分泌不足引起侏儒症,分泌过多引起巨人症

13、种子萌发需要环境(外界)条件:一定的水分,充足的空气(完全淹没在水中的种子不能萌发是因为没有充足的空气),适宜的温度和自身条件:胚是完整的,活得,度过休眠期的。大多数种子萌发不需要光,探究是否需要光时一定提供适宜的各种外界条件和自身条件。发芽率达到90%以上的种子才能播种。

14、被子植物(桃树)与裸子植物(松树)的主要区别是种子外是否有果皮包被,也就是胚珠外是否有子房壁包被。

15、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。

16、显微镜的使用

17、蒸腾作用的意义:

18、原理:发生了渗透作用,该作用必须具备两个条件:

19、动物细胞的吸水和失水(以红细胞为例:红细胞膜相当于一层半透膜):

20、常见的病毒有:人类流感病毒(引起流行性感冒)、SARS病毒、人类免疫缺陷病毒(HIV)[引起艾滋病(*)]、禽流感病毒、乙肝病毒、人类天花病毒、狂犬病毒、烟草花叶病毒等。

21、主动运输:低浓度运向高浓度,需要载体和能量。意义:对活细胞完成各项生命活动有重要作用。

22、反射:是指在中枢神经系统的参与下,动物或人体对内外环境变化作出的规律性应答。

23、反射活动需要完整的反射弧才能完成。

24、单向流动逐级递减

25、河流受污染后,能够通过物理沉降化学分解微生物分解,很快消除污染

26、淋巴因子的成分是糖蛋白

27、过敏:抗体吸附在皮肤,黏膜,血液中的某些细胞表面,再次进入人体后使细胞释放组织胺等物质.

28、高度分化的细胞一般不增殖。例如:肾细胞

29、能进行光合作用的细胞不一定有叶绿体

30、基因自由组合时间:简数一次分裂、*作用

31、基因=编码区+非骗码区

32、已获得免疫的机体再次受到抗原的刺激可能发生过敏反应(过敏体质),可能不发生过敏反应(正常体质)

33、用氧十八标记的水过了很长时间除氧气以外水蒸气以外二氧化碳和有机物中也有标记的氧十八

34、脂肪肝的形成:摄入脂肪过多,不能及时运走;磷脂合成减少,脂蛋白合成受阻。

35、谷氨酸发酵时

36、光能利用率:光合作用时间、光合作用面积、光合作用效率(水,光,矿质元素,温度,二氧化碳浓度)

37、*卵靠近珠孔

38、生物体内的大量元素:CHONPSKCaMg

39、判断:西瓜的二倍体、三倍体、四倍体是3个不同的物种×(三倍体是一个品种,与物种无关)

40、判断(1)不同种群的生物肯定不属于同一物种×(例:上海动物园中的猿猴和峨眉山上的猿猴是同一物种不是同一群落)

41、基因分离定律:等位基因的分离

42、胞内酶(例如:呼吸酶)组织酶(例如:消化酶)不在内环境中

43、植物的组织培养VS动物个体培养

44、单克隆抗体的制备是典型的动物细胞融合技术和动物细胞培养的综合应用

45、体现细胞膜的选择透过性的运输方式⑴主动运输⑵自有扩散

46、影响酶作用的因素

47、在视野看到物像偏左下方,标本应朝左下方移动物像才能移到中央;标本朝右上方移动,在视野看到的物像朝左下方移动。

48、与蛋白质合成和分泌有关的细胞器有核糖体、内质网、高尔基体、线粒体。

49、与主动运输有关的细胞器是线粒体、核糖体。

50、与能量转换有关的细胞器是叶绿体、线粒体。

51、能自我复制的细胞器有线粒体、叶绿体、中心体。

52、血友病简介:症状——血液中缺少一种凝血因子,故凝血时间延长,或出血不止;血友病也是一种伴_隐性遗传病,其遗传特点与色盲完全一样。

53、水圈包括地球上(全部的海洋和江河湖泊)。

54、探究的一般过程是从(发现问题、提出问题)开始的。探究的一般过程包括(提出问题、作出假设、制定计划、实施计划、得出结论、表达和交流)。

55、生物与生物之间,最常见的是(捕食)关系,如七星瓢虫捕食蚜虫。还有(竞争)关系,如稻田里的水稻和杂草;(合作)关系如蚂蚁、蜜蜂等昆虫组成的大家庭。

56、在一定地域内,(生物)与(环境)所形成的统一的整体叫做(生态系统)。

57、当人类排放的有毒物质进入生态系统,有毒物质会通过(食物链)不断积累,叫做(生物富集)。会危害生态系统中的'许多生物,最终威胁人类自身。食物链中营养级别(越高)生物,体内有毒物质积累越多。

58、运动并不仅靠运动系统,还需要神经系统的控制和调节,以及消化系统、呼吸系统、循环系统供应能量。

59、荷兰科学家英格豪斯(J.Ingen–housz)发现:只有在阳光照射下,只有绿叶才能更新空气.

60、1864年,德国科学家萨克斯(J.von.Sachs,1832——1897)实验证明:光合作用产生淀粉.


初一数学知识点归纳 40句菁华(扩展6)

——七年级下册数学知识点总结归纳 40句菁华

1、相反数

2、*方根

3、乘法

4、单项式的数字因数叫做单项式的系数。

5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

6、几个单项式的和叫做多项式。

7、多项式中不含字母的项叫做常数项。

8、整式不一定是单项式。

9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

13、积是一个多项式,其项数与多项式的项数相同。

14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

16、*行线的性质:两直线*行。(线的*行

17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

18、会判轴对称图形,会根据画对称图形,(或在方格中画)

19、常见的轴对称图形有:

20、垂直三要素:垂直关系,垂直记号,垂足。

21、垂线段最短。

22、命题:判断一件事情的语句叫命题。

23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

28、钝角三角形有两条高在外部。

29、三个角对应相等的两个三角形不一定全等。

30、两边及一角对应相等的两个三角形不一定全等。

31、一条斜边和一直角边对应相等的两个三角形全等。

32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

33、全等图形

34、两个能够重合的图形称为全等图形。

35、全等三角形

36、若Y随X的变化而变化,则X是自变量Y是因变量。

37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间

38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;

40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;


初一数学知识点归纳 40句菁华(扩展7)

——初三化学知识点总结归纳 40句菁华

1、大多数金属可与氧气的反应 2、金属 + 酸 → 盐 + H2↑

2、构成原子的三种微粒:质子,中子,电子。

3、三大化学肥料:N、P、K

4、溶液:一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物

5、物质的变化及性质

6、取用药品注意节约:取用药品应严格按实验室规定的用量,如果没有说明用量,一般取最少量,即液体取1-2ml,固体只要盖满试管底部。

7、块状或密度较大的固体颗粒一般用镊子夹取,

8、从细口瓶里取用试液时,应把瓶塞拿下,倒放在桌上;倾倒液体时,应使标签向着手心,瓶口紧靠试管口或仪器口,防止残留在瓶口的药液流下来腐蚀标签。

9、用试管刷刷洗,刷洗时须转动或上下移动试管刷,但用力不能过猛,以防止试管损坏。

10、仪器洗干净的标志是:玻璃仪器内壁附着的水既不聚成水滴,也不成股流下。

11、对人体吸入的空气和呼出的气体探究:p10—p12

12、化学性质:物质在化学变化中表现出来的性质(可燃性、助燃性、氧化性、还原性、稳定性)。如铁易生锈、氧气可以支持燃烧等。

13、氧化物:由两种元素组成的纯净物中,其中一种元素的氧元素的化合物。如co2 so2等。

14、氧化反应:物质与氧的反应。(缓慢氧化也是氧化反应)

15、空气的成分:

16、药品:过氧化氢和二氧化锰或高锰酸钾或氯酸钾和二氧化锰

17、操作步骤:

18、检验方法:用带火星的木条伸入集气瓶内,如果木条复燃,说明该瓶内的气体是氧气。

19、电解水实验:电解水是在直流电的作用下,发生了化学反应。水分子分解成氢原子和氧原子,这两种原子分别两两构成成氢分子、氧分子,很多氢分子,氧分子聚集成氢气、氧气。

20、化学性质——可燃性。

21、分子与原子的比较:

22、硬水和软水

23、蒸馏:分离沸点不同的物质组成的混合物

24、在原子中,原子核所带的正电荷数(核电荷数)就是质子所带的电荷数(中子不带电),而每个质子带1个单位正电荷,因此,核电荷数=质子数,由于原子核内质于数与核外电子数相等,所以在原子中核电荷数=质子数=核外电子数。

25、相对原子质量只是一个比,不是原子的实际质量。它的单位是1,省略不写 。

26、在相对原子质量计算中,所选用的一种碳原子是碳12,是含6个质子和6个中子的碳原子,它的质量的1/12约等于1.66×10-27 kg。

27、元素、原子的区别和联系

28、了解原子结构示意图的意义——1-18号元素的原子结构示意图

29、离子的表示方法——离子符号。离子符号表示式xn+或xn-,x表示元素符号或原子团的化学式,x右上角的“+”或“-”表示离子带的是正电荷还是负电荷,“n”表示带n个单位的电荷。例如,al3+表示1个带3个单位正电荷的铝离子;3so42-表示3个带两个单位负电荷的硫酸根离子。

30、定义:用元素符号来表示物质组成的式子。

31、化合价的应用:依据化合物中各元素化合价的代数和为0。

32、书写化学式时注意根据化合价的正负,按左正右负氨特殊来书写。

33、元素符号正上方的数字:表示该元素的化合价

34、c60(由分子构成)

35、还原性c+2cuo==2cu+ co2

36、焦炭 炼钢

37、物理性质:通常情况下无色无味气体,密度比空气略大,能溶于水

38、实验装置:固液常温下

39、用途:灭火,做气体肥料,化工原料,干冰用于人工降雨及做制冷剂

40、金属的腐蚀和防护: 1.铁生锈的条件 与氧气和水蒸气等发生化学变化

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1