位置 > 首页 > 句子 >

数学知识点 100句菁华

日期:2022-12-02 00:00:00

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学知识点 100句菁华扩展阅读


数学知识点 100句菁华(扩展1)

——初中数学知识点总结 100句菁华

1、整式与分式

2、解一元二次方程的步骤:

3、韦达定理

4、如果两条直线都和第三条直线*行,这两条直线也互相*行

5、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

6、定理2

7、直角三角形斜边上的中线等于斜边上的一半

8、勾股定理

9、勾股定理的逆定理

10、四边形的外角和等于360°

11、*行四边形判定定理1

12、*行四边形判定定理3

13、矩形判定定理2

14、菱形面积=对角线乘积的一半,即S=(a×b)÷2

15、正方形性质定理1

16、三角形中位线定理

17、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

18、混合运算法则:先乘方,后乘除,最后加减。

19、性质定理1

20、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零

21、性质定理3

22、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

23、圆是定点的距离等于定长的点的集合

24、圆的外部可以看作是圆心的距离大于半径的点的集合

25、同圆或等圆的半径相等

26、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线

28、添括号法则

29、垂径定理

30、圆是以圆心为对称中心的中心对称图形

31、解一元一次方程的一般步骤:

32、普查与抽样调查

33、切割线定理

34、有关数轴

35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

36、倒数:乘积为1的两个数互为倒数,0没有倒数。

37、内公切线长=d-(R-r)

38、三角形的分类

39、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

40、三角形内角和定理:三角形三个内角的和等于180°

41、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

42、判定:

43、性质:矩形的四个角都是直角,矩形的对角线相等

44、s菱=争6(n、6分别为对角线长)

45、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

46、2整式的加减

47、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

48、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

49、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。

50、多边形对角线的条数:

51、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

52、定理:相交两圆的连心线垂直*分两圆的公共弦

53、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

54、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

55、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.

56、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.

57、圆的有关性质

58、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。

59、直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)

60、由绝对值的定义可知:

61、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

62、有理数中仍然有:乘积是1的两个数互为倒数。

63、对角线相等的菱形;

64、直线外一点与直线上各点连接的所有线段中,垂线段最短。

65、同位角相等,两直线*行。

66、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

67、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。

68、推论2有一个角等于60°的等腰三角形是等边三角形。

69、多边形内角和定理n边形的内角的和等于(n-2)×180°。

70、推论夹在两条*行线间的*行线段相等。

71、*行四边形判定定理2两组对边分别相等的四边形是*行四边形。

72、矩形判定定理2对角线相等的*行四边形是矩形。

73、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

74、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。

75、定理1关于中心对称的两个图形是全等的

76、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。

77、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。

78、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半。

79、(2)合比性质:

80、(3)等比性质:

81、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

82、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。

83、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

84、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

85、①两圆外离d﹥R+r。

86、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。

87、换元法

88、面积法

89、运算顺序:A、高级运算到低级运算;B、(同级运算)从“左”到“右”(如5÷×5);C、(有括号时)由“小”到“中”到“大”。

90、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。

91、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

92、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)

93、两条*行线被第三条直线所截,内错角相等。(两直线*行,内错角相等)

94、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)

95、*移的性质

96、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。

97、X轴:水*的数轴叫X轴或横轴。向右方向为正方向。

98、原点:两个数轴的交点叫做*面直角坐标系的原点。

99、点到轴及原点的距离:

100、不等式的解法:


数学知识点 100句菁华(扩展2)

——中考数学知识点 60句菁华

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


数学知识点 100句菁华(扩展3)

——数学知识点 50句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、封闭图形一周的长度,就是它的周长。

3、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、乘方的定义:

7、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

8、数据1,2,3,4,5的中位数是3.

9、整数和分数统称为有理数。

10、人们通常用一条直线上的点表示数,这条直线叫做数轴。

11、个位满10向十位进1。

12、弄清题意,找出未知数,并用X表示;

13、角

14、除法

15、什么是复名数?

16、什么样的数能被3整除?

17、圆的周长总是直径的三倍多一些。

18、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。

19、两直线*行,内错角相等

20、三角形内角和定理 三角形三个内角的和等于180°

21、边边边公理(SSS) 有三边对应相等的两个三角形全等

22、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

23、逆定理 如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称

24、推论 任意多边的外角和等于360°

25、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

26、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,*行线,转比例,两端各自找联系。

27、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

28、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。

29、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

30、解题公式:追及时间=追及路程÷速度差

31、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

32、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

33、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

34、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。

35、忽视零向量致误

36、错位相减求和项处理不当致误

37、数列中的最值错误

38、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

39、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

40、同类项及其合并

41、指数

42、3空间几何体的表面积与体积

43、直线与*面*行的判定定理:*面外一条直线与此*面内的一条直线*行,则该直线与此*面*行。

44、实数

45、三角形内角和定理:

46、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

47、等腰三角形的性质定理

48、矩形判定定理2

49、相交弦定理

50、列方程解应用题的常用公式:


数学知识点 100句菁华(扩展4)

——初中数学知识点总结 50句菁华

1、实数

2、整式与分式

3、一元二次方程根的情况

4、函数

5、全等三角形的对应边、对应角相等

6、勾股定理的逆定理

7、*行四边形判定定理1

8、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

9、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

10、点、线、面、体

11、圆的内部可以看作是圆心的距离小于半径的点的集合

12、线段的中点:

13、一元一次方程

14、解一元一次方程的一般步骤:

15、圆的外切四边形的两组对边的和相等

16、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.

17、乘积的符号的确定

18、定义:有一组邻边相等的*行四边形叫做菱形

19、推论2经过切点且垂直于切线的直线必经过圆心

20、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

21、弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

22、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.

23、定义:顶点在圆上,角的两边都与圆相交的角。(两条件缺一不可)

24、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

25、人们通常用一条直线上的点表示数,这条直线叫做数轴。

26、两个负数,绝对值大的反而小。

27、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。

28、有理数中仍然有:乘积是1的两个数互为倒数。

29、过两点有且只有一条直线。

30、同位角相等,两直线*行。

31、定理2到一个角的两边的距离相同的点,在这个角的*分线上。

32、定理四边形的内角和等于360°。

33、四边形的外角和等于360°。

34、推论任意多边的外角和等于360°。

35、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。

36、菱形面积=对角线乘积的一半,即S=(a×b)÷2。

37、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。

38、定理1关于中心对称的两个图形是全等的

39、等腰梯形的两条对角线相等。

40、(2)合比性质:

41、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线*行于三角形的第三边。

42、圆是定点的距离等于定长的点的集合。

43、①两圆外离d﹥R+r。

44、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

45、方程组:有几个方程组成的一组方程叫做方程组。如果方程组中含有两个未知数,且含未知数的项的`次数都是一次,那么这样的方程组叫做二元一次方程组。

46、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。连接直线外一点与直线上各点的所有线段中,垂线段最短。

47、同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。如:∠1和∠5。

48、同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF的同侧,具有这种位置关系的两个角叫同旁内角。如:∠3和∠6。

49、*行公理推论:*行于同一直线的两条直线互相*行。如果b//a,c//a,那么b//c

50、解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的`解集。


数学知识点 100句菁华(扩展5)

——初一数学上册知识点总结 50句菁华

1、点、线、面、体

2、线段、射线、直线

3、线段的性质

4、角的表示

5、多边形:

6、方程

7、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net).

8、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

9、连接两点间的线段的长度,叫做这两点的距离(distance).

10、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

11、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

12、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

13、检:检验所求的解是否符合题意.

14、0表示的意义

15、单项式的系数:

16、单项式的次数:

17、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

18、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

19、一元一次不等式与一次函数的综合运用:

20、解不等式的诀窍

21、解不等式组的口诀

22、同角或等角的补角相等

23、直线外一点与直线上各点连接的所有线段中,垂线段最短

24、如果两条直线都和第三条直线*行,这两条直线也互相*行

25、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

26、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

27、直角三角形斜边上的中线等于斜边上的一半

28、定理 线段垂直*分线上的点和这条线段两个端点的距离相等 ?

29、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

30、零指数与负指数公式:

31、配方:

32、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

33、判断三条线段能否组成三角形:

34、第三边取值范围:

35、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

36、培养学生获取信息,分析问题,处理问题的能力。

37、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

38、等式的性质:

39、只有符号不同的两个数称互为相反数。

40、左边第一个非零的数字起,所有的数字都是有效数字。

41、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

42、2 有理数

43、系数:;

44、多项式:;

45、去分母

46、去括号

47、系数化为1

48、一些实际问题中的规律和等量关系:

49、同号两数相加,取相同的符号,并把绝对值相加;

50、2.1*行线


数学知识点 100句菁华(扩展6)

——数学必修一知识点 50句菁华

1、二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

2、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

3、集合的表示:{ … } 如:{我校的篮球队员},{太*洋,大西洋,印度洋,北冰洋}

4、列举法:{a,b,c……}

5、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

6、不含任何元素的集合叫做空集,记为Φ

7、函数图象知识归纳

8、映射

9、待定系数法

10、换元法

11、函数最大(小)值(定义见课本p36页)

12、集合的表示方法:常用的有列举法、描述法和图文法

13、常用数集:N,Z,Q,R,N_

14、真子集:AB且存在x0∈B但x0A;记为AB(或,且)

15、交集:A∩B={x|x∈A且x∈B}

16、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

17、若{1,2}A{1,2,3,4,5}则满足条件的集合A的个数是

18、点的集合M={(x,y)|xy≥0}是指

19、已知集合A={x|},若A∩R=,则实数m的取值范围是

20、复合函数的有关问题

21、判断对应是否为映射时,抓住两点:

22、先看笔记后做作业。

23、做题之后加强反思。

24、科学的听课方式

25、(xfy有2个零点0)(xf有两个不等实根;0)(xfy有1个零点0)(xf有两个相等实根;0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定.

26、二分法

27、已知两角及一边,或两边及一边的对角(对三角形是否存在要讨论)用正弦定理

28、的解集是(1,3),那么的解集是什么?

29、★★两种题型:

30、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

31、函数零点的求法:

32、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

33、函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

34、导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

35、Venn图:

36、子集个数:

37、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

38、全集与补集

39、函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;

40、应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:

41、如何求复合函数的定义域?

42、反函数的性质有哪些?

43、如何利用导数判断函数的单调性?

44、抛物线有一个顶点P,坐标为

45、二次项系数a决定抛物线的开口方向和大小。

46、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。

47、“相等”关系:A=B(5≥5,且5≤5,则5=5)

48、函数定义域、值域求法综合

49、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

50、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.


数学知识点 100句菁华(扩展7)

——六年级上册数学知识点总结 40句菁华

1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

4、圆周率实验:

5、区分周长的一半和半圆的周长:

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

7、取近似数的方法:

8、无限小数:小数部分的位数是无限的小数,叫做无限小数。

9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

22、分数的分类

23、分子分母是互质数的分数叫做最简分数。

24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

25、圆的面积=圆周率×半径×半径

26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

29、分数除法:分数除法是分数乘法的逆运算。

30、你还能得到哪些信息?

31、文化教育支出了多少元?购买衣物支出了多少元?

32、因为零不能作除数,所以分数的分母不能为零。

33、被除数 相当于分子,除数相当于分母。

34、整数加法计算法则:

35、同分母分数加减法计算方法:

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、用字母表示数的意义和作用

38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

39、、长方体

40、圆锥体


数学知识点 100句菁华(扩展8)

——六年级下册数学知识点归纳 40句菁华

1、常见的圆柱圆锥解决问题:

2、正方形判定定理

3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。

4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

5、整十整百数乘一位数

6、比较大小的方法:

7、多位数的写法

8、多位数的大小比较:

9、“万”“亿”作单位的数:

10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

11、按比例分配:

12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

14、判断这两个量的比值是否一定,比值一定就成正比例关系;

15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)

16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

17、以长方形的宽为底面周长,长为高。

18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

21、圆锥的特征:

22、圆锥的相关计算公式:

23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下

25、摄氏度

26、(1)圆柱周围的面叫做侧面。

27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。

28、温馨提示:圆柱的底面是圆形,面不是椭圆。

29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

32、一个圆柱占空间的大小,叫做这个圆柱的体积。

33、圆锥是由一个底面和一个侧面两部分组成。

34、温馨提示:

35、百分数。

36、统计。

37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

38、两条*行线之间的距离处处相等。

39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?

40、统计表制作步骤:


数学知识点 100句菁华(扩展9)

——数学分析知识点的总结 40句菁华

1、代数式

2、整式与分式

3、韦达定理

4、一元二次方程根的情况

5、角边角公理(

6、四边形的外角和等于360°

7、如果两条直线都和第三条直线*行,这两条直线也互相*行

8、同旁内角互补,两直线*行

9、三角形内角和定理:

10、*行四边形性质定理1

11、*行四边形性质定理3

12、矩形性质定理2

13、矩形判定定理1

14、菱形性质定理1

15、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角

16、等腰梯形判定定理

17、对角线相等的梯形是等腰梯形

18、判定定理2

19、性质定理3

20、弦切角定理

21、①两圆外离

22、弧长计算公式:L=n兀R/180——》L=nR

23、提高解题速度,掌握解题技巧。提高解题速度的主要因素有二:一是解题方法的巧妙与简捷;二是对常规解法的掌握是否达到高度的熟练程度。

24、必修课程由5个模块组成:

25、*面向量:初等运算、坐标运算、数量积及其应用

26、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

27、导数:导数的概念、求导、导数的应用

28、复数:复数的概念与运算

29、绝对值:

30、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数> 0,小数—大数< 0。

31、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

32、有理数乘法的运算律:

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法。

34、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

35、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

36、三角函数的单调性判断致误

37、忽视零向量致误

38、数列中的最值错误

39、面积体积计算转化不灵活致误

40、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。


数学知识点 100句菁华(扩展10)

——数学初中知识点总结 40句菁华

1、有理数:①整数→正整数,0,负整数;

2、过两点有且只有一条直线

3、同角或等角的余角相等——余角=90-角度。

4、直线外一点与直线上各点连接的所有线段中,垂线段最短

5、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

6、同位角相等,两直线*行

7、同旁内角互补,两直线*行

8、两直线*行,内错角相等

9、推论

10、角边角公理(

11、等腰三角形的判定定理

12、直角三角形斜边上的中线等于斜边上的一半

13、逆定理

14、*行四边形判定定理2

15、矩形判定定理2

16、菱形面积=对角线乘积的一半,即S=(a×b)÷2

17、等腰梯形的两条对角线相等

18、对角线相等的梯形是等腰梯形

19、三角形中位线定理

20、梯形中位线定理

21、(1)比例的基本性质:如果a:b=c:d,那么ad=bc

22、圆是以圆心为对称中心的中心对称图形

23、切线的判定定理

24、正n边形的每个内角都等于(n-2)×180°/n

25、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

26、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

27、两组对边*行的四边形是*行四边形。

28、判定:

29、定义:有一个角是直角的*行四边形叫做矩形

30、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

31、对称性:等腰梯形是轴对称图形

32、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

33、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。

34、公式与性质

35、多边形外角和定理:

36、垂径定理:垂直于弦的直径*分这条弦并且*分弦所对的两条弧

37、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

38、推论1经过圆心且垂直于切线的直线必经过切点

39、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

40、定理:一条弧所对的圆周角等于它所对的圆心角的一半

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1