位置 > 首页 > 句子 >

六年级数学上册知识点 50句菁华

日期:2022-12-02 00:00:00

1、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。

2、用分数的基本性质,把分数分母扩大或者缩小分母是100的分数,再写成百分数形式,这种方法简便,但有局限性。

3、用表格方式解决有局限性,数目必须小,例:

4、1 34

5、3 32

6、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

7、除以一个不等于0的数,等于乘这个数的倒数

8、比例的基本性质是在比例里两内项积等于两外项积。

9、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

10、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

11、被除数÷除数= 被除数/除数

12、因为零不能作除数,所以分数的分母不能为零。

13、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

14、乘法分配律:

15、整数加法计算法则:

16、圆的面积=圆周率×半径×半径

17、被除数与商的变化规律:

18、错的原因是什么?

19、当符合什么条件时,错误才能变成正确?

20、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

21、分数乘整数的计算方法

22、倒数的意义

23、分数除法的计算方法

24、20是25的几分之几? 20÷25=4/5

25、工程问题

26、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

27、1的倒数是它本身,因为1×1=1。

28、求一个数的几分之几是多少?(用乘法)

29、什么是速度?

30、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

31、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

32、圆的半径由6分米增加到9分米,圆的面积增加了45*方分米。(__)

33、这个月哪项出最多?支出了多少元?

34、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

35、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

36、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

37、分数的意义:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

38、假分数与带分数的互化:

39、分数方程的计算方法与整数方程的计算方法一致,在计算过程中要注意统一分数单位。

40、用字母表示数的意义和作用

41、圆是*面内封闭曲线围成的*面图形。

42、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

43、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

44、百分数和分数的区别和联系:

45、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

46、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

47、3.14(__)π

48、圆沿一条直线滚动时,圆心在一条直线上运动。(__)

49、两个圆的大小一样,它们的半径一定相等。(__)

50、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?


六年级数学上册知识点 50句菁华扩展阅读


六年级数学上册知识点 50句菁华(扩展1)

——六年级数学上册知识点 60句菁华

1、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

2、两个小数的比,向右移动小数点的位置。也是先化成整数比。

3、圆的周长:C =2πr =πd

4、用表格方式解决有局限性,数目必须小,例:

5、1 34

6、3 32

7、用代数方法解(一般规律)

8、分数乘法的意义:一个数×分数

9、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

10、整数加法计算法则:

11、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

12、分数除法应用题:

13、被除数÷除数=被除数×除数的倒数。

14、混合运算用梯等式计算,等号写在第一个数字的左下角。

15、错在哪里?

16、找单位“1”的方法

17、求倒数的方法

18、1的倒数是1,0没有倒数。

19、已知一个数的几分之几是多少,求这个数的问题

20、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

21、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

22、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

23、能用数对表示物体的位置,正确区分列和行的顺序;

24、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

25、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

26、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

27、在长6厘米,宽4厘米的长方形内画一个的圆,这个圆的周长是(__),面积是(__)。

28、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。

29、这个月哪项出最多?支出了多少元?

30、购买衣物的支出比文化教育支出少百分之几?

31、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

32、常见的百分率的计算方法:

33、求价格先降a%又上升a%后的价格:1×(1-a%)×(1+a%)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

34、真分数和假分数:

35、同分母分数加、减法:同分母分数相加、减,分母不变,只把分子相加减,计算的结果,能约分的要约成最简分数。

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、、长方形

38、、长方体

39、三角形

40、梯形

41、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

42、已知单位“1”的量用乘法。

43、分数应用题基本数量关系(把分数看成比)

44、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

45、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

46、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

47、半圆周长=圆周长一半+直径= πr+d

48、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。

49、小数、分数、百分数之间的互化

50、掌握求倒数的方法;

51、理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆;

52、分数除法:分数除法是分数乘法的逆运算。

53、分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

54、比和比例的意义:

55、“数与形相结合”的思想

56、圆的位置是由(__)确定的,圆的大小决定于(__)的长短。

57、半个圆的周长就是圆周长的一半。(__)

58、当周长相等时,面积的是(__)

59、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)

60、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?


六年级数学上册知识点 50句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、整数加法计算法则:

2、小数乘法法则:

3、小数乘法意义:

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知A比B多(或少)几分之几,求A的解题方法

6、物*置的相对性

7、理解比例的意义和基本性质,会解比例。

8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

9、在*面图上标出物*置的方法:

10、绘制路线图的方法:

11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

17、求一个数比另一个数多(或少)几分之几(或百分之几)?

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、根据比的基本性质,可以把比化成最简单的整数比。

20、被减数-减数=差被减数-差=减数差+减数=被减数

21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

24、假分数与带分数的互化:

25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、已知一个数的百分之几是多少,求这个数?

28、浓度问题

29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

34、被除数 相当于分子,除数相当于分母。

35、减法的性质:

36、分数除法应用题:

37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

39、根据比的基本性质,可以把比化成最简单的整数比。

40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

42、常用统计图的优点:

43、使学生能在方格纸上用数对确定位置;

44、使学生理解倒数的意义,掌握求倒数的方法;

45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

50、“数与形相结合”的思想


六年级数学上册知识点 50句菁华(扩展3)

——六年级数学下册知识点 40句菁华

1、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

2、能借助数轴初步学会比较正数、0和负数之间的大小。

3、像-16、-500、-3/8、-0.4…这样的数叫做负数。-3/8读作负八分之三。16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。+6.3读作正六点三。0既不是正数,也不是负数。

4、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

5、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

6、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是*面,侧面是曲面。

7、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

8、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

9、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放*,用一块*板水*地放在圆锥的顶点上面,竖直地量出*板和底面之间的距离)

10、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

11、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

12、正比例和反比例:

13、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

14、通过“抽屉原理”的灵活应用感受数学的魅力。

15、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

16、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

17、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

18、圆柱是由两个底面和一个侧面三部分组成的。

19、(1)圆柱两个底面之间的距离叫做圆柱的高。

20、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

21、容积的计算方法和体积的计算方法相同,只是计算容积的数据要从里面测量。

22、在以直角三角形的直角边为轴旋转而成的两个圆锥中,以较短直角边为轴旋转而成的圆锥的体积比较大。

23、百分数。

24、空间与图形。

25、统计。

26、两组对边分别*行的四边形叫做*行四边形;*行四边形有无数条高,*行四边形不是轴对称图形。

27、只有一组对边*行的四边形叫梯形。

28、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

29、圆柱的特征:

30、圆柱的侧面展开图:

31、圆锥的特征:

32、圆锥的相关计算公式:

33、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

34、比的意义(1)两个数相除又叫做两个数的比

35、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

36、用比例解决问题:

37、常见的数量关系式:(成正比例或成反比例)

38、2 1

39、1 2

40、摸2个同色球计算方法。


六年级数学上册知识点 50句菁华(扩展4)

——数学七年级知识点 60句菁华

1、具有相反意义的量

2、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高线、中线、角*分线的意义和做法

4、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

5、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。

6、列代数式

7、代数式的值

8、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形。

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

10、正数:大于0的数。

11、连接两点间的线段的长度,叫做这两点的距离。

12、整数:正整数、0、负整数,统称整数。

13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

14、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

15、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

16、先定符号,再算绝对值。

17、乘法交换律:ab=ba

18、除以一个不等于0的数,等于乘这个数的倒数。

19、同级运算,从左到右进行。

20、*方根

21、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

22、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

23、同位角、内错角、同旁内角:

24、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

25、垂线的性质:

26、整数和分数统称为有理数(rationalnumber).

27、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

28、垂直三要素:垂直关系,垂直记号,垂足。

29、有理数乘法法则

30、有理数中仍然有:乘积是1的两个数互为倒数.

31、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

32、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

33、根据有理数的乘法法则可以得出

34、做有理数混合运算时,应注意以下运算顺序:

35、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

36、对应周长取值范围

37、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

38、多项式

39、能够完全重合的两个图形是全等图形。

40、两边及一角对应相等的两个三角形不一定全等。

41、绝对值:

42、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.

43、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

44、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

45、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

46、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

47、若Y随X的变化而变化,则X是自变量Y是因变量。

48、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180—2x。

49、两点确定一条直线,两点之间线段最短._______________叫两点间距离.

50、数学活动——动手操作、探索新知

51、0表示的意义

52、理解:只有能化成分数的数才是有理数。

53、注意:

54、相反数的性质与判定

55、绝对值的几何定义

56、绝对值的性质

57、总结梳理,提炼方法。

58、互为倒数:乘积为1的两个数互为倒数;

59、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。

60、判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;


六年级数学上册知识点 50句菁华(扩展5)

——初一数学上册知识点总结 50句菁华

1、点、线、面、体

2、线段、射线、直线

3、线段的性质

4、角的表示

5、多边形:

6、方程

7、将由*面图形围成的立体图形表面适当剪开,可以展开成*面图形,这样的*面图形称为相应立体图形的展开图(net).

8、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).

9、连接两点间的线段的长度,叫做这两点的距离(distance).

10、括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.

11、移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)

12、审:审题,分析题中已知什么,求什么,明确各数量之间的关系.

13、检:检验所求的解是否符合题意.

14、0表示的意义

15、单项式的系数:

16、单项式的次数:

17、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。

18、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。

19、一元一次不等式与一次函数的综合运用:

20、解不等式的诀窍

21、解不等式组的口诀

22、同角或等角的补角相等

23、直线外一点与直线上各点连接的所有线段中,垂线段最短

24、如果两条直线都和第三条直线*行,这两条直线也互相*行

25、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

26、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

27、直角三角形斜边上的中线等于斜边上的一半

28、定理 线段垂直*分线上的点和这条线段两个端点的距离相等 ?

29、同底数幂的除法:am÷an=am-n ,底数不变,指数相减。

30、零指数与负指数公式:

31、配方:

32、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;

33、判断三条线段能否组成三角形:

34、第三边取值范围:

35、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;

36、培养学生获取信息,分析问题,处理问题的能力。

37、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a0)。

38、等式的性质:

39、只有符号不同的两个数称互为相反数。

40、左边第一个非零的数字起,所有的数字都是有效数字。

41、绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;

42、2 有理数

43、系数:;

44、多项式:;

45、去分母

46、去括号

47、系数化为1

48、一些实际问题中的规律和等量关系:

49、同号两数相加,取相同的符号,并把绝对值相加;

50、2.1*行线


六年级数学上册知识点 50句菁华(扩展6)

——小学数学五年级第二单元知识点 50句菁华

1、一个数的倍数的个数是无限的。

2、个位上是0、2、4、6、8的数是2的倍数。

3、个位上是0或5的数,是5的倍数。

4、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。(至少3个因数)

5、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13的倍数,是的就是合数,不是的就是质数。

6、列举法︰12的因数有:1,2,3,4,6,12

7、用集合表示︰

8、根据算式:63÷7=9

9、分解质因数:把一个合数分解成多个质数相乘的形式。树状图

10、互质数:公因数只有1的两个数,叫做互质数。

11、长方体最多有( )个相对面是正方形,最多有( )个面的完全相同。

12、一个长方体中,如果相交于一个顶点的三条棱的长度分别是6厘米,3厘米,3厘米,那么它( )个面是正方形,正方体的面积是( );有( )个面的面积相等,这些面的面积都是( )。

13、因为正方体是长、宽、高都( )的长方体,所以正方体是( )的长方体。

14、一个正方体的表面是54*方厘米,那么一个面的面积是( )*方厘米,棱长是( )厘米。

15、长方体的长、宽、高都扩大2倍,那么表面就扩大( )倍。

16、一节通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50节,需要多少*方米的铁皮?

17、一个长方体的游泳池,长20米,宽18米,水深2.5米。

18、一个房间的长6米,宽3.5米,高3米,门窗面积是8*方米。现在要把这个房间的四

19、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的面积是多少*方厘米?

20、求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法

21、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

22、解方程原理:天**衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

23、10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商

24、公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a *行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】

25、梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个*行四边形; *行四边形的底相当于梯形的上下底之和; *行四边形的高相当于梯形的高;*行四边形面积等于梯形面积的2倍; 因为*行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

26、由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局

27、表示相等关系的式子叫做等式。

28、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和个数=中间数

29、数对(x,y)第1个数表示第几列(x),第2个数表示第几行(y),写数对时,是先写列数,再写行数。

30、分母越大,分数单位越小,最大的分数单位是2(1)。

31、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

32、求一个数是(占)另一个数的几分之几,用除法列算式计算。

33、单向*移求不同的和的个数规律:

34、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。

35、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

36、只有1个因数。“1”既不是质数,也不是合数。

37、分解质因数

38、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

39、长方体或正方体6个面和总面积叫做它的表面积。

40、除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

41、商的变化规律:(十分重要)

42、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

43、运算定律

44、一个算式里,如果只含有同一级运算,要从左到右依次计算。

45、常用的土地面积单位:*方米、公顷。

46、解方x程要写解字,会检验过程。列方程解应用题要注意写解设。

47、把一个*行四边形拼成长方形,面积不变,宽变小了,周长也变小。

48、一个社区、校园的面积通常用“公顷”为单位;表示一个国家、省市、地区、湖泊的面积是就要用“*方千米”作单位。

49、小数的改写:

50、求小数的近似数:


六年级数学上册知识点 50句菁华(扩展7)

——小学数学三年级知识点 50句菁华

1、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

2、相邻两个质量单位进率是1000。

3、认识整千数(记忆:10个一千是一万)

4、被减数是三位数的连续退位减法的运算步骤:

5、有余数除法的含义:通过*均分一些物体,有时有剩余,就出现了余数。

6、余数与除数的关系:

7、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

8、4米的1/5和1米的4/5同样长。

9、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

10、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

11、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

12、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

13、把分数化成小数的方法:用分数的分子除以分母。

14、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

15、分数大小比较的应用题:工作效率大的快,工作时间小的快。

16、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

17、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

18、只要是*均分就用(除法)计算。

19、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

20、笔算除法:

21、简单的经过时间的计算方法。认识年、月、日1。1年有12个月。

22、闰年:2月有29天的月份是*年,*年有365天。

23、整千、整百、整十数除以一位数的口算方法。

24、会判断商是几位数。

25、乘除法的估算:4舍5入法。

26、1厘米中间的每一小格的长度是1毫米。

27、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

28、把一些白色围棋子放在书包里,从中任意摸出一个,()是白棋子。

29、从8个红色的的玻璃球和2个*的玻璃球中任意摸出一个,找到()色的玻璃球可能性更大些。

30、计算300×2,可以算()个百乘2得()个百,也就是()。

31、14×2=()。

32、学校买来20个羽毛球,每个羽毛球2元,一共花了多少钱?

33、正方形、长方形数属于特殊的*行四边形。

34、正方形还是特殊的长方形。

35、时针走1大格,分针正好走(1)圈,分针走1圈是(60)分,也就是(1)小时。时针走1圈,分针要走(12)圈。

36、上完一节课需要40(),再加()分就是一小时。

37、钟面上最短的针是()针,较长的针是()针。转动最快的针是()针,它走一小格的时间是()秒。

38、小明做一道数学口算题大约需要3()。

39、分针跑一圈就是1小时。()

40、把一块月饼*均分成2份,每份是这块月饼的一半,也就是它的()分之(),写作(—)。

41、58这个分数中,()是分子,()是分母,读作()。

42、一本书有21页,*均每天看这本书的3页,占全书的()

43、修路队要修一条公路,已经修好了这条公路的712,还剩几分之几未修好?

44、钟面上有3根针,它们是(时针)、(分针)、(秒针),其中走得最快的是(秒针),走得最慢的是(时针)。

45、钟面上时针和分针正好成直角的时间有:(3点整)、(9点整)。

46、公式。(每两个相邻的时间单位之间的进率是60)

47、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

48、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的数。

49、四边形的特点:有四条直的边,有四个角。

50、*行四边形的特点:


六年级数学上册知识点 50句菁华(扩展8)

——七年级数学上册寒假作业答案 40句菁华

1、解:根据内错角相等,两直线*行,

2、解:根据两直线*行,内错角相等,

3、B;2、D;3、B;4、D;5、D

4、(1)2;(2)54;(3)13;(4)-9

5、B2、D3、B4、D5、A6、D7、A8、D9、D10、C

6、0,1-1,0,1

7、(1)1(2)-(3)13(4)22、原式=当a=2时,原式=10

8、9±9

9、0

10、±a

11、≥1

12、2实偶次1正数1负

13、21,23,25;18、35m;19、3n+1;325或361.

14、解:(1);(2)

15、(1);(2)x=-1

16、(1)m=6(2)x=-4

17、(1)55.5万人(2)6%(3)6000人

18、两两点确定一条直线

19、(1)x(2)b(3)a(4)10(5)x(6)y

20、80133m+3(14)(y-x)m+10

21、C2.B3.A4.A5.B6.①,②,④

22、49.后面、上面、左面10.(1)10(2)略11.33

23、C2.B.3.A.4.B5.B.6.①③7.180m8.?3

24、计算:

25、(1)28元(2)星期二,29元(3)亏了1115.5元

26、B2.D3.C4..B5.D6.C7.C8.A9.A10..B11.黄;12.1;

27、8.;14.20;15.7n+8,50;16.7×[3-(-3)?7];17.(1)-0.7;(2)

28、50,1+3+5+7+……+(2n+1)=n2

29、数与字母所有字母的指数和数字字母02、几个单项式的和次数的项的次数

30、不变相乘(a)=a(1)10mnmn9(2)(212)3(3)612(4)x10(5)-a14

31、(1)(6)x1412648xyz(2)?a3nb3m(3)4na2nb3n427

32、4或210、0.5X+3)80%=16.8

33、a=-212、互为倒数13、2.51乘(10的5次方)14、015、不大于4

34、可能性不大。

35、A;2.C;3.B;4.D;C;6.∠α=∠β,内错角相等,两直线*行;

36、b;a

37、1;ab

38、4、9或8、9或9、10

39、D

40、[3,4]=12


六年级数学上册知识点 50句菁华(扩展9)

——六年级上册数学复习资料 40句菁华

1、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

3、根据比的基本性质,可以把比化成最简单的整数比。

4、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

5、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

6、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

7、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值;

8、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

9、能用数对表示物体的位置,正确区分列和行的顺序;

10、圆的周长和圆周率的意义,圆周长公式的推导过程;

11、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

12、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

13、分数乘法意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

14、分数乘整数:数形结合、转化化归

15、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

16、圆的定义:圆是由曲线围成的一种*面图形。

17、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

18、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

19、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。

20、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai)表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

21、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)

22、常见半径与直径的周长和面积的结果。

23、68113.04

24、96153.86

25、52.2539.427.065

26、512.25721.9838.465

27、520.35928.2663.585

28、556.251547.1176.625

29、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的'增减变化情况。

30、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。(要在统计图上写出百分率)

31、每幅图的圆点总数都可以看作是两个相同的数相乘的积,这些算式还可以用*方数的形式来表示。1+3=221+3+5=321+3+5+7=42得出:从1起连续奇数的和等于奇数个数的*方。

32、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

33、圆周率实验:

34、圆的周长公式

35、圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧,半圆既不是优弧,也不是劣弧。连接圆上任意两点的线段叫做弦。圆中最长的弦为直径。

36、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

37、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

38、路程一定,速度比和时间比成反比。(如:路程相同,速度比是4:5,时间比则为5:4)

39、百分数化成分数:

40、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1