位置 > 首页 > 句子 >

五年级上册数学知识点 60句菁华

日期:2022-12-02 00:00:00

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、构建初步的空间想象力;

7、多边形面积的计算。

8、计算小数加法先把小数点对齐,再把相同数位上的数相加

9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

10、用计算器来验算

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、构建空间想象力:

13、①含有未知数的等式称为方程。

14、*行四边形面积=底×高字母公式:s=ah

15、分割法;

16、画垂线时用实线画。

17、*行四边形面积=底×高(s*=ah)

18、三角形高=面积×2÷底 h = 2 S ÷ a

19、运算定律和性质:

20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

21、(关于“大约)应用题:

22、圆柱的侧面积=底面圆的周长×高:S=ch。

23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。

24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

25、相邻两个质量单位进率是1000。

26、圆的面积=圆周率×半径×半径:s=πr2。

27、*行四边形的面积=底×高S=ah

28、正方体的表面积=棱长×棱长×6公式:S=6a2

29、镜子内外的左右方向是相反的。

30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

32、5×1.8 就是求 1.5 的 1.8 倍是多少。

33、所有的方程都是等式,但等式不一定都是方程。

34、方程的检验过程:方程左边=……

35、身份证码:18位

36、长方形和正方形是特殊的*行四边形。

37、解方程。

38、求一个数的近似数:

39、分母:表示*均分的份数。分子:表示取出的份数。

40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。

42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

43、含有未知数的等式是方程。

44、求方程中未知数的过程,叫做解方程。

45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能

46、1992所有的质因数的和是( 88 )。

47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。

49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。

50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

55、有些事件的发生是确定的,有些是不确定的。 可能

56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

57、正方形里最大的圆。两者联系:边长=直径

58、长方形里最大的圆。两者联系:宽=直径

59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


五年级上册数学知识点 60句菁华扩展阅读


五年级上册数学知识点 60句菁华(扩展1)

——六年级上册数学知识点 60句菁华

1、同分母分数加减法计算方法:

2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

4、分数乘整数的计算方法

5、分数乘分数的的计算方法

6、倒数的意义

7、已知单位“1”用乘法,求单位“1”用除法;

8、正比例和反比例:

9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。

10、圆的周长是它的直径的π倍。(__)

11、圆内最长的线段是直径。(__)

12、3.14(__)π

13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

15、已知圆的周长,求圆的面积S=π(C÷π÷2)?

16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

18、应纳税额。计算方法:营业额×税率

19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

20、两种数量比较

21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

23、相遇问题速度和=路程÷相遇时间

24、速度×时间=路程路程÷速度=时间路程÷时间=速度

25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

30、小数与百分数互化的规则:

31、百分数与分数互化的规则:

32、常用的分数、小数及百分数的互化

33、求一个数的百分之几是多少

34、已知一个数的百分之几是多少,求这个数?

35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。

36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)

37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

38、当符合什么条件时,错误才能变成正确?

39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

45、比和除法、分数的联系:

46、根据比与除法、分数的关系,可以理解比的后项不能为0。

47、化简比:

48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

49、数不仅可以用来表示数量和顺序,还可以用来编码。

50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

51、常用统计图的优点:

52、确定物*置的方法:

53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

56、倒数:乘积是1的两个数叫做互为倒数。

57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

58、日常应用:

59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

60、“方程”思想


五年级上册数学知识点 60句菁华(扩展2)

——五年级上册数学知识点 50句菁华

1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

6、把因数的位置交换相乘

7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。

9、用字母表示计算公式。

10、综合计算法

11、*行四边形面积=底×高 S = a h

12、*行四边形底=面积÷高 a = S ÷ h

13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )

14、1*方米=100*方分米=10000*方厘米

15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

16、求近似数的方法一般有三种:(P10)

17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、长方形的周长=(长+宽)×2:C=(a+b)×2。

20、长方形的面积=长×宽:S=ab。

21、三角形的面积=底×高÷2 S=ah÷2

22、长方体的体积=长×宽×高公式:V = abh

23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

24、5×1.8 就是求 1.5 的 1.8 倍是多少。

25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

26、方程的检验过程:方程左边=……

27、等底等高的*行四边形面积相等;

28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

29、正方形的特点:有4个直角,4条边相等。

30、*行四边形的特点:

31、可以表示起点

32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数

33、读数和写数(读数时写汉字写数时写*数字)

34、公式

35、真分数:分子小于分母的分数叫做真分数。真分数小于1。

36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

37、自然数按是否是2的倍数来分:奇数偶数

38、自然数按因数的个数来分:质数、合数、1.

39、表示相等关系的式子叫做等式。

40、含有未知数的等式是方程。

41、列方程解应用题的思路:

42、1992所有的质因数的和是( 88 )。

43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。

44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。

45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。

46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

47、长方形里最大的圆。两者联系:宽=直径

48、车轮滚动一周前进的路程就是车轮的周长。

49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

50、常用的*方数:112=121 122=144 132=169 142=196 152=225


五年级上册数学知识点 60句菁华(扩展3)

——六年级上册数学知识点 50句菁华

1、整数加法计算法则:

2、小数乘法法则:

3、小数乘法意义:

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知A比B多(或少)几分之几,求A的解题方法

6、物*置的相对性

7、理解比例的意义和基本性质,会解比例。

8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

9、在*面图上标出物*置的方法:

10、绘制路线图的方法:

11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

17、求一个数比另一个数多(或少)几分之几(或百分之几)?

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、根据比的基本性质,可以把比化成最简单的整数比。

20、被减数-减数=差被减数-差=减数差+减数=被减数

21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

24、假分数与带分数的互化:

25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、已知一个数的百分之几是多少,求这个数?

28、浓度问题

29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

34、被除数 相当于分子,除数相当于分母。

35、减法的性质:

36、分数除法应用题:

37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

39、根据比的基本性质,可以把比化成最简单的整数比。

40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

42、常用统计图的优点:

43、使学生能在方格纸上用数对确定位置;

44、使学生理解倒数的意义,掌握求倒数的方法;

45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

50、“数与形相结合”的思想


五年级上册数学知识点 60句菁华(扩展4)

——八年级上册数学知识点 50句菁华

1、直角三角形全等的判定

2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、定理1关于某条直线对称的两个图形是全等形

5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

6、多边形内角和定理n边形的内角的和等于(n—2)×180°

7、*行四边形性质定理2*行四边形的对边相等

8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

10、矩形性质定理1矩形的四个角都是直角

11、菱形性质定理1菱形的四条边都相等

12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

13、线段垂直*分线上的点与这条线段的两个端点的距离相等

14、等腰三角形的性质

15、运用公式法

16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

18、比较法

19、公式法

20、定理1 在角的*分线上的点到这个角的两边的距离相等

21、推论 2 有一个角等于60°的等腰三角形是等边三角形

22、由坐标找点:例找点B( 3,-2 ) ?

23、关于坐标轴、原点的对称点:

24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

27、因式分解

28、轴对称图形上对应线段相等、对应角相等。

29、点(x,y)关于x轴对称的点的坐标为(x,—y)

30、等边三角形的三个内角相等,等于60°,

31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

33、同底数幂的除法

34、因式分解的思路与解题步骤:

35、分组分解法:

36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

38、类比分数的通分得到分式的通分:

39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数

47、个体:组成总体的每一个考察对象称为个体、

48、对角线相等的*行四边形是矩形。

49、对角线互相垂直的*行四边形是菱形。

50、邻边相等的矩形是正方形。


五年级上册数学知识点 60句菁华(扩展5)

——八年级上册物理知识点 50句菁华

1、减弱噪声的方法:在声源处减弱、在传播过程中减弱、在人耳处减弱。

2、误差:测量值和真实值之间的差别叫误差。误差产生的原因:①与测量的人有关;②与测量的工具有关。任何测量结果都有误差,误差只能尽量减小,不能绝对避免;但错误是可以避免的。

3、回声:声音在传播途径中遇到碍物被返射回去的现象,叫回声。如回声比原声到达人耳晚0。1s以上,人耳能把他们区分开,否则回声会与原声混在一起会加强原声。利用“双耳效应”可以听到立体声。

4、自身能够发光的物体叫光源,如太阳、萤火虫等,而月亮不是光源。

5、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋)。

6、音调:声音的高低叫音调,频率越高,音调越高(频率:物体在每秒内振动的次数,表示物体振动的快慢,单位是赫兹,振动物体越大音调越低;)。

7、运动的描述

8、速度(常考点)

9、骨传导:声音的传导不仅仅可以用耳朵,还可以经头骨、颌骨传到听觉神经,引起听觉。这种声音的传导方式叫做骨传导。一些失去听力的人可以用这种方法听到声音。

10、人们用分贝(dB)来划分声音等级;听觉下限0dB;为保护听力应控制噪声不超过90dB;为保证工作学习,应控制噪声不超过70dB;为保证休息和睡眠应控制噪声不超过50dB。

11、汽化和液化:

12、光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。

13、反射定律:三线同面,法线居中,两角相等,光路可逆.即:反射光线与入射光线、法线在同一*面上,反射光线和入射光线分居于法线的两侧,反射角等于入射角。光的反射过程中光路是可逆的。

14、近视及远视的矫正:近视眼要戴凹透镜,远视眼要戴凸透镜.

15、测量:

16、凸透镜:中间厚边缘薄的透镜是凸透镜。凹透镜:中间薄边缘厚的透镜是凹透镜。

17、凹透镜的作用:对光线发散。

18、照相机的结构:

19、投影器与幻灯机的区别:投影器用两块大塑料螺纹透镜作聚光镜,并用一块*面镜把像反射到屏幕上。

20、色光三原色:红、绿、蓝。颜料三原色:红、黄、蓝。

21、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,整个原子呈中性。

22、匀速直线运动:我们把物体沿着直线且速度不变的运动叫匀速直线运动。

23、比较物体运动快慢的方法:

24、测量原理:*均速度计算公式v=ts。

25、回声:

26、人耳听觉范围:

27、音色:

28、温度计制作原理:

29、凝固条件:

30、凝华现象:

31、吸热与放热:

32、光的直线传播:

33、光线:

34、判断日食:

35、反射的分类:

36、色散:

37、紫外线的应用:

38、凹透镜:

39、凹透镜对光线的作用:

40、光心:

41、投影仪成像特点:倒立放大的实像。

42、密度与温度:温度能改变物质的密度,一般物体都是在温度升高时体积膨胀(即:热胀冷缩,水在4℃以下是热缩冷胀),密度变小。

43、凸透镜有两个实焦点,焦点到光心距离叫做焦距。凹透镜有两个虚焦点。

44、照相机的镜头是个凸透镜,调焦环的作用是调节镜头到胶片的距离,拍近景时,镜头往前伸,

45、望远镜的目镜和物镜都是凸透镜,目镜相当于放大镜,物镜相当于照相机镜头。显微镜的目镜和物镜也是凸透镜,目镜相当于放大镜,物镜相当于投影仪镜头。

46、物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化吸热,液化放热。汽化分为蒸发和沸腾。蒸发现象:在任何温度下,发生在液体表面,缓慢的汽化现象。影响蒸发的因素:

47、折射角随入射角的增大而增大

48、当光射到两介质的分界面时,反射、折射同时发生

49、生活中与光的折射有关的例子:水中的鱼的位置看起来比实际位置高一些(鱼实际在看到位置的后下方);由于光的折射,池水看起来比实际的浅一些;水中的人看岸上的景物的位置比实际位置高些;夏天看到天上的星斗的位置比星斗实际位置高些;透过厚玻璃看钢笔,笔杆好像错位了;斜放在水中的筷子好像向上弯折了;(要求会作光路图)

50、因果(条件记忆法):如判定使用左、右手定则的条件时,可根据由于在磁场中有电流,而产生力,就用左手定则;若是电力在磁场中运动,而产生电流,就用右手定则。


五年级上册数学知识点 60句菁华(扩展6)

——高等数学知识点总结 50句菁华

1、了解函数的奇偶性、单调性、周期性、和有界性。

2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。

3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。

4、熟练运用微分中值定理证明简单命题。

5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。

6、会求有理函数、三角函数、有理式和简单无理函数的不定积分

7、掌握不定积分的换元积分法。

8、理解定积分的概念,掌握定积分的性质及定积分中值定理。

9、掌握反常积分的运算。

10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。

11、掌握一阶线性微分方程的解法,会解伯努利方程.

12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。

13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。

14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。

15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。

16、列方程解应用题的常用公式:

17、代数式

18、一元二次方程的解法

19、韦达定理

20、一元二次方程根的情况

21、点,线,面

22、直线外一点与直线上各点连接的所有线段中,垂线段最短

23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行

24、同旁内角互补,两直线*行

25、两直线*行,同位角相等

26、推论

27、三角形内角和定理:

28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等

29、定理1

30、等腰三角形的性质定理

31、逆定理

32、多边形内角和定理

33、矩形性质定理2

34、菱形判定定理2

35、等腰梯形的两条对角线相等

36、*行线等分线段定理

37、同圆或等圆的半径相等

38、到已知角的两边距离相等的点的轨迹,是这个角的*分线

39、弦切角定理

40、正n边形的面积Sn=pn*rn/2

41、扇形面积公式:S扇形=n兀R^2/360=LR/2

42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

43、绝对值:

44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

45、有理数乘法的运算律:

46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

47、混合运算法则:先乘方,后乘除,最后加减。

48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0


五年级上册数学知识点 60句菁华(扩展7)

——五年级下册数学复习资料 40句菁华

1、小数乘整数:求几个相同加数的和的简便运算。

2、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。

3、25×4.78×4

4、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。

5、长方体的表面积=(长×宽+长×高+宽×高)×2S=(ab+ah+bh)×2

6、体积单位:立方厘米、立方分米和立方米相邻单位的进率为1000

7、轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直*分线。这样我们就得到了以下性质:

8、奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,

9、质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。

10、正方体的展开图:正方体的*面展开图一共有11种。

11、因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数。

12、个位上是0或者5的数,都是5的倍数。

13、整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数

14、奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。

15、轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴

16、长方体有8个顶点。

17、正方体棱长之和:棱长×12。

18、长方体表面积=(长×宽+宽×高+长×高)×2或长方体表面积=长×宽×2+宽×高×2+长×高×2。

19、棱长是1cm的正方体,体积是1cm3,棱长是1cm的正方体,体积是1dm3,棱长是1cm的正方体,体积是1m3

20、长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3=a×a×aa3表示3个a相乘。

21、把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”*均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。

22、分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。

23、如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。

24、几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。

25、把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。

26、与质数有关的猜想:

27、分数由来:

28、分数乘除法:

29、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)

30、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)

31、质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97、

32、长方体或正方体底面的面积叫做底面积。

33、分子比分母小的分数叫真分数。真分数小于1。

34、6、12、18是3和2共有的倍数,叫做它们的公倍数。其中,6是最小的公倍数,叫做它们的最小公倍数。

35、把异分母分数分别化成和原来分数相等的分母分数,叫做通分。用分子除以分母除不尽时,要根据需要按“四五入”法保留几位小数。

36、同分母分数相加、减,分母不变,只把分子相加减。

37、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)

38、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。

39、因数和倍数:如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

40、一个数的因数的求法:一个数的因数的个数是有限的,最小的是1,最大的是它本身,方法是成对地按顺序找。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1