日期:2022-12-02 00:00:00
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、能正确进行乘号的简写,略写;小数乘法的计算法则;
6、构建初步的空间想象力;
7、多边形面积的计算。
8、计算小数加法先把小数点对齐,再把相同数位上的数相加
9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
10、用计算器来验算
11、有限小数:小数部分的位数是有限的小数,叫做有限小数。
12、构建空间想象力:
13、①含有未知数的等式称为方程。
14、*行四边形面积=底×高字母公式:s=ah
15、分割法;
16、画垂线时用实线画。
17、*行四边形面积=底×高(s*=ah)
18、三角形高=面积×2÷底 h = 2 S ÷ a
19、运算定律和性质:
20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
21、(关于“大约)应用题:
22、圆柱的侧面积=底面圆的周长×高:S=ch。
23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。
24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
25、相邻两个质量单位进率是1000。
26、圆的面积=圆周率×半径×半径:s=πr2。
27、*行四边形的面积=底×高S=ah
28、正方体的表面积=棱长×棱长×6公式:S=6a2
29、镜子内外的左右方向是相反的。
30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】
31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
32、5×1.8 就是求 1.5 的 1.8 倍是多少。
33、所有的方程都是等式,但等式不一定都是方程。
34、方程的检验过程:方程左边=……
35、身份证码:18位
36、长方形和正方形是特殊的*行四边形。
37、解方程。
38、求一个数的近似数:
39、分母:表示*均分的份数。分子:表示取出的份数。
40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。
41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。
42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。
43、含有未知数的等式是方程。
44、求方程中未知数的过程,叫做解方程。
45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能
46、1992所有的质因数的和是( 88 )。
47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。
48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。
49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。
50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。
51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。
52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。
53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
55、有些事件的发生是确定的,有些是不确定的。 可能
56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
57、正方形里最大的圆。两者联系:边长=直径
58、长方形里最大的圆。两者联系:宽=直径
59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
五年级上册数学知识点 60句菁华扩展阅读
五年级上册数学知识点 60句菁华(扩展1)
——六年级上册数学知识点 60句菁华
1、同分母分数加减法计算方法:
2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
4、分数乘整数的计算方法
5、分数乘分数的的计算方法
6、倒数的意义
7、已知单位“1”用乘法,求单位“1”用除法;
8、正比例和反比例:
9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
10、圆的周长是它的直径的π倍。(__)
11、圆内最长的线段是直径。(__)
12、3.14(__)π
13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50
14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
15、已知圆的周长,求圆的面积S=π(C÷π÷2)?
16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积
17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
18、应纳税额。计算方法:营业额×税率
19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率
20、两种数量比较
21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数
23、相遇问题速度和=路程÷相遇时间
24、速度×时间=路程路程÷速度=时间路程÷时间=速度
25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
30、小数与百分数互化的规则:
31、百分数与分数互化的规则:
32、常用的分数、小数及百分数的互化
33、求一个数的百分之几是多少
34、已知一个数的百分之几是多少,求这个数?
35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)
37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
38、当符合什么条件时,错误才能变成正确?
39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
45、比和除法、分数的联系:
46、根据比与除法、分数的关系,可以理解比的后项不能为0。
47、化简比:
48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
49、数不仅可以用来表示数量和顺序,还可以用来编码。
50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
51、常用统计图的优点:
52、确定物*置的方法:
53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
56、倒数:乘积是1的两个数叫做互为倒数。
57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
58、日常应用:
59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
60、“方程”思想
五年级上册数学知识点 60句菁华(扩展2)
——五年级上册数学知识点 50句菁华
1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。
6、把因数的位置交换相乘
7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
9、用字母表示计算公式。
10、综合计算法
11、*行四边形面积=底×高 S = a h
12、*行四边形底=面积÷高 a = S ÷ h
13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )
14、1*方米=100*方分米=10000*方厘米
15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;
16、求近似数的方法一般有三种:(P10)
17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
18、三位数乘一位数:积有可能是三位数,也有可能是四位数。
19、长方形的周长=(长+宽)×2:C=(a+b)×2。
20、长方形的面积=长×宽:S=ab。
21、三角形的面积=底×高÷2 S=ah÷2
22、长方体的体积=长×宽×高公式:V = abh
23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
24、5×1.8 就是求 1.5 的 1.8 倍是多少。
25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
26、方程的检验过程:方程左边=……
27、等底等高的*行四边形面积相等;
28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)
29、正方形的特点:有4个直角,4条边相等。
30、*行四边形的特点:
31、可以表示起点
32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
33、读数和写数(读数时写汉字写数时写*数字)
34、公式
35、真分数:分子小于分母的分数叫做真分数。真分数小于1。
36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.
37、自然数按是否是2的倍数来分:奇数偶数
38、自然数按因数的个数来分:质数、合数、1.
39、表示相等关系的式子叫做等式。
40、含有未知数的等式是方程。
41、列方程解应用题的思路:
42、1992所有的质因数的和是( 88 )。
43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。
44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。
45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。
46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
47、长方形里最大的圆。两者联系:宽=直径
48、车轮滚动一周前进的路程就是车轮的周长。
49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
50、常用的*方数:112=121 122=144 132=169 142=196 152=225
五年级上册数学知识点 60句菁华(扩展3)
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
五年级上册数学知识点 60句菁华(扩展4)
——七年级生物上册知识点 60句菁华
1、生物圈的范围:
2、生态系统的组成:
3、植物是生态系统中的,动物是生态系统中的的分解者。
4、生态系统的概念:在一定区域内,与形成的统一的整体物链积累。
5、写出显微镜各部分的结构及作用
6、显微镜的操作:
7、能够共同完成一种或几种生理功能的多个器官按照一定的次序组成在一起构成八大系统:消化系统、呼吸系统、循环系统、泌尿系统、运动系统、神经系统、生殖系统、内分泌系统。
8、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
9、合理灌溉的依据:不同植物对各种必需的矿质元素的需要量不同;同一种植物在不同的生长发育时期,对各种必需的矿质元素的需要量也不同。
10、生物能排出体内产生的废物(植物落叶,动物和人出汗、呼吸和排尿);
11、调查的注意事项——你所看到的生物,都要如实记录。
12、观察的物像与实际图像相反。如果是实物标本d,那么视野里是P,即上下,左右分别颠倒一次。
13、植物细胞与动物细胞的相同点:都有细胞膜、细胞质、细胞核。
14、病毒的种类
15、绿色植物:藻类、苔藓、蕨类,种子植物四大类群。
16、种子的萌发(P88)
17、种子萌发的过程
18、显微镜成像的规律:上下颠倒,左右相反(字母“p”在显微镜下看到的应是“d”。
19、生物能生长和繁殖
20、叶绿体:(把光能转变成化学能并贮存在有机物中即光合作用的场所——“生产车间”,是能量转换器)。
21、如果将生态系统中的每一个环节中的所有生物分别称重,在一般情况下数量做大的应该是生产者。
22、一个生态系统中,往往有很多条食物链,它们彼此交错,形成了食物网。物质和能量沿着食物链和食物网流动的。有毒物质的积累是沿着食物链营养级别的升高而不断增加的。营养级越高,生物数量越少;营养级越高,有毒物质沿食物链积累(富集)。
23、生态系统的类型:森林生态系统、草原生态系统、农田生态系统、海洋生态系统、城市生态系统等
24、表达和交流
25、生物圈的范围:大气圈的底部:可飞翔的鸟类、昆虫、细菌等
26、放在显微镜下观察的生物标本,应该薄而透明,光线能透过,才能观察清楚。因此必须加工制成玻片标本。
27、植物细胞与动物细胞的相同点:都有细胞膜、细胞质、细胞核
28、基因是DNA上的一个具有特定遗传信息的片断
29、绿色开花植物的六大器官
30、植物的组织:分生组织、保护组织、营养组织、输导组织等
31、孢子是一种生殖细胞。
32、藻类植物通过光合作用制造的有机物可以作为鱼的饵料,放出的氧气除供鱼类呼吸外,而且是大气中氧气的重要来源。
33、幼根的生长
34、植株生长需要的营养物质:氮、磷、钾
35、传粉和*(课本103)
36、根的生长一方面靠分生区增加细胞的数量,一方面要靠伸长区细胞体积的增大。
37、年轮:
38、是否需要转氨基是看身体需不需要
39、培养基:物理状态:固体、半固体、液体
40、冬小麦在秋冬低温条件下细胞活动减慢物质消耗减少单细胞内可溶性还原糖的含量明显提高细胞自由水比结合水的比例减少活动减慢是适应环境的结果
41、用氧十八标记的水过了很长时间除氧气以外水蒸气以外二氧化碳和有机物中也有标记的氧十八
42、蔗糖不能出入半透膜
43、水的光解不需要酶,光反应需要酶,暗反应也需要酶
44、一切感觉产生于大脑皮层
45、生态系统的成分包括非生物的物质和能量、生产者和分解者
46、判断(1)不同种群的生物肯定不属于同一物种×(例:上海动物园中的猿猴和峨眉山上的猿猴是同一物种不是同一群落)
47、达尔文认为生命进化是由突变、淘汰、遗传造成的
48、mRNA→一条DNA单链→双链DNA分子
49、研究微生物的生长规律用液体培养基
50、发酵产品的分离和提纯⑴过滤和沉淀(菌体)
51、染色体除了含有DNA外还含有少量的RNA
52、竞争:两种生物生活在一起,由于争夺资源、空间等而发生斗争的现象,叫做~。(例如:大草履虫和小草履虫)7、捕食:一种生物以另一种生物为食。
53、非生物因素对生物的影响:
54、警戒色:某些有恶臭或毒刺的动物所具有的鲜艳色彩和斑纹。
55、适应的相对性:指生物对环境的适应只是一定程度的适应,不是绝对的。
56、测定种子的发芽率(会计算)和抽样检测
57、叶片的结构
58、光合作用概念:绿色植物利用光提供的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
59、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源、氧气来源、能量来源。
60、绿色植物通过光合作用,不断消耗大气中的二氧化碳,产生氧气,维持了生物圈中的碳氧*衡。
五年级上册数学知识点 60句菁华(扩展5)
——高等数学知识点总结 50句菁华
1、了解函数的奇偶性、单调性、周期性、和有界性。
2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
4、熟练运用微分中值定理证明简单命题。
5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。
6、会求有理函数、三角函数、有理式和简单无理函数的不定积分
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
11、掌握一阶线性微分方程的解法,会解伯努利方程.
12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。
13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。
15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。
16、列方程解应用题的常用公式:
17、代数式
18、一元二次方程的解法
19、韦达定理
20、一元二次方程根的情况
21、点,线,面
22、直线外一点与直线上各点连接的所有线段中,垂线段最短
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
24、同旁内角互补,两直线*行
25、两直线*行,同位角相等
26、推论
27、三角形内角和定理:
28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
29、定理1
30、等腰三角形的性质定理
31、逆定理
32、多边形内角和定理
33、矩形性质定理2
34、菱形判定定理2
35、等腰梯形的两条对角线相等
36、*行线等分线段定理
37、同圆或等圆的半径相等
38、到已知角的两边距离相等的点的轨迹,是这个角的*分线
39、弦切角定理
40、正n边形的面积Sn=pn*rn/2
41、扇形面积公式:S扇形=n兀R^2/360=LR/2
42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
43、绝对值:
44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
45、有理数乘法的运算律:
46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
47、混合运算法则:先乘方,后乘除,最后加减。
48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
五年级上册数学知识点 60句菁华(扩展6)
——高考数学知识点总结 40句菁华
1、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
2、求解与函数有关的问题易忽略定义域优先的原则。
3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
5、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
6、反正弦、反余弦、反正切函数的取值范围分别是
7、你还记得某些特殊角的三角函数值吗?
8、.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量*行,但与任意向量都不垂直。
9、是向量与*行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
10、对不重合的两条直线
11、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
12、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
13、利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
14、解析几何问题的求解中,*面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
15、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
16、线面*行和面面*行的定义、判定和性质定理你掌握了吗?线线*行、线面*行、面面*行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种*行之间转换的条件是什么?
17、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
18、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
19、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
20、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
21、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
22、函数的图象的*移,方程的*移以及点的*移公式易混:
23、形如的周期都是,但的周期为。
24、正弦定理时易忘比值还等于2R。
25、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
26、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
27、求概率时,正难则反(根据p1+p2+……+pn=1);
28、函数的基本概念
29、如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
30、函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
31、求导
32、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
33、Venn图:
34、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
35、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
36、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
39、二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
40、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
数学知识点 100句菁华七年级上册生物知识点 60句菁华中考数学知识点 60句菁华六年级上册数学知识点 60句菁华八年级上册物理知识点 60句菁华六年级数学上册知识点 60句菁华数学七年级知识点 60句菁华二年级上册数学知识点 50句菁华五年级上册数学知识点 50句菁华八年级上册数学知识点 50句菁华六年级数学上册知识点 50句菁华六年级上册数学知识点 50句菁华初中七年级数学知识点 50句菁华小学数学五年级第二单元知识点 50句菁华数学七年级上册知识点 50句菁华数学知识点 50句菁华七年级下册数学知识点 40句菁华七年级下册数学知识点总结 40句菁华七年级下册数学知识点总结归纳 40句菁华三年级上册数学的知识点归纳 40句菁华三年级上册数学知识点总结 40句菁华二年级下册数学知识点 40句菁华六年级上册数学知识点总结 40句菁华六年级下册数学知识点归纳 40句菁华小学四年级上册数学知识点总结 40句菁华数学五年级知识点 40句菁华七年级上册数学知识点 30句菁华中考七年级数学知识点 30句菁华五年级数学知识点 30句菁华
四月的句子 200句菁华简单的伤感句子摘录 200句菁华元旦祝福语句 100句菁华小学生春季运动会口号 60句菁华护士寄语简短 60句菁华虎年有创意的简短拜年词 60句菁华鼓励自己的励志句子 60句菁华qq两字网名 50句菁华一个人生活的简短语录 50句菁华做义工的人生感悟语录 50句菁华女生版微信个性签名 50句菁华学校为中考加油的暖心句子 50句菁华年度优秀员工评语 50句菁华最新庆祝元宵节的文案 50句菁华毕业给老师赠言 50句菁华爱情经典祝福 50句菁华祝福孩子成长寄语 50句菁华祝自己生日快乐的搞笑句子 50句菁华
表达压力大的句子 50句菁华美好的早安祝福语语录摘录 40句菁华三年级下册描写春天的诗句 40句菁华中考加油的励志句子 40句菁华五一劳动节的经典句子 40句菁华国外名著名言 40句菁华孩子取得好成绩祝福语录 40句菁华小道理句子简短 40句菁华想哭的句子 40句菁华描写桂花的唯美诗句 40句菁华根据交往礼仪对父母的短信问候 40句菁华清明节向先烈寄语 40句菁华生孩子报喜朋友圈 40句菁华祝同事事业越来越好的祝福语 40句菁华阆中城市精神口号 40句菁华静待疫情散去文案 40句菁华2020年精选元旦新年贺卡祝福语集合 30句菁华2021教师节活动文案句子大全 30句菁华