日期:2022-12-03 00:00:00
1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。
3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
4、圆周率实验:
5、区分周长的一半和半圆的周长:
6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。
7、取近似数的方法:
8、无限小数:小数部分的位数是无限的小数,叫做无限小数。
9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数
10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14
11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:
12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。
13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。
15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。
19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。
20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。
22、分数的分类
23、分子分母是互质数的分数叫做最简分数。
24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
25、圆的面积=圆周率×半径×半径
26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。
28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
29、分数除法:分数除法是分数乘法的逆运算。
30、你还能得到哪些信息?
31、文化教育支出了多少元?购买衣物支出了多少元?
32、因为零不能作除数,所以分数的分母不能为零。
33、被除数 相当于分子,除数相当于分母。
34、整数加法计算法则:
35、同分母分数加减法计算方法:
36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。
37、用字母表示数的意义和作用
38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
39、、长方体
40、圆锥体
六年级上册数学知识点总结 40句菁华扩展阅读
六年级上册数学知识点总结 40句菁华(扩展1)
——六年级上册数学知识点 60句菁华
1、同分母分数加减法计算方法:
2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。
4、分数乘整数的计算方法
5、分数乘分数的的计算方法
6、倒数的意义
7、已知单位“1”用乘法,求单位“1”用除法;
8、正比例和反比例:
9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。
10、圆的周长是它的直径的π倍。(__)
11、圆内最长的线段是直径。(__)
12、3.14(__)π
13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50
14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:
15、已知圆的周长,求圆的面积S=π(C÷π÷2)?
16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积
17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
18、应纳税额。计算方法:营业额×税率
19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率
20、两种数量比较
21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数
23、相遇问题速度和=路程÷相遇时间
24、速度×时间=路程路程÷速度=时间路程÷时间=速度
25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。
26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。
27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。
29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。
30、小数与百分数互化的规则:
31、百分数与分数互化的规则:
32、常用的分数、小数及百分数的互化
33、求一个数的百分之几是多少
34、已知一个数的百分之几是多少,求这个数?
35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。
36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)
37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
38、当符合什么条件时,错误才能变成正确?
39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。
40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。
42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
45、比和除法、分数的联系:
46、根据比与除法、分数的关系,可以理解比的后项不能为0。
47、化简比:
48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
49、数不仅可以用来表示数量和顺序,还可以用来编码。
50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;
51、常用统计图的优点:
52、确定物*置的方法:
53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。
54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。
55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。
56、倒数:乘积是1的两个数叫做互为倒数。
57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示
58、日常应用:
59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
60、“方程”思想
六年级上册数学知识点总结 40句菁华(扩展2)
——六年级上册数学知识点 50句菁华
1、整数加法计算法则:
2、小数乘法法则:
3、小数乘法意义:
4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。
5、已知A比B多(或少)几分之几,求A的解题方法
6、物*置的相对性
7、理解比例的意义和基本性质,会解比例。
8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。
9、在*面图上标出物*置的方法:
10、绘制路线图的方法:
11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。
12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。
13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)
14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)
15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径
16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。
17、求一个数比另一个数多(或少)几分之几(或百分之几)?
18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
19、根据比的基本性质,可以把比化成最简单的整数比。
20、被减数-减数=差被减数-差=减数差+减数=被减数
21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。
22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;
24、假分数与带分数的互化:
25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。
26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
27、已知一个数的百分之几是多少,求这个数?
28、浓度问题
29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。
30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:
31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。
32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。
34、被除数 相当于分子,除数相当于分母。
35、减法的性质:
36、分数除法应用题:
37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
39、根据比的基本性质,可以把比化成最简单的整数比。
40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
42、常用统计图的优点:
43、使学生能在方格纸上用数对确定位置;
44、使学生理解倒数的意义,掌握求倒数的方法;
45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。
46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。
50、“数与形相结合”的思想
六年级上册数学知识点总结 40句菁华(扩展3)
——六年级下册数学知识点归纳 40句菁华
1、常见的圆柱圆锥解决问题:
2、正方形判定定理
3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。
4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。
5、整十整百数乘一位数
6、比较大小的方法:
7、多位数的写法
8、多位数的大小比较:
9、“万”“亿”作单位的数:
10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
11、按比例分配:
12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?
14、判断这两个量的比值是否一定,比值一定就成正比例关系;
15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)
16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
17、以长方形的宽为底面周长,长为高。
18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的
19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高
21、圆锥的特征:
22、圆锥的相关计算公式:
23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!
24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下
25、摄氏度
26、(1)圆柱周围的面叫做侧面。
27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。
28、温馨提示:圆柱的底面是圆形,面不是椭圆。
29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch
30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
32、一个圆柱占空间的大小,叫做这个圆柱的体积。
33、圆锥是由一个底面和一个侧面两部分组成。
34、温馨提示:
35、百分数。
36、统计。
37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
38、两条*行线之间的距离处处相等。
39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?
40、统计表制作步骤:
六年级上册数学知识点总结 40句菁华(扩展4)
——初中数学知识点总结 100句菁华
1、整式与分式
2、解一元二次方程的步骤:
3、韦达定理
4、如果两条直线都和第三条直线*行,这两条直线也互相*行
5、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
6、定理2
7、直角三角形斜边上的中线等于斜边上的一半
8、勾股定理
9、勾股定理的逆定理
10、四边形的外角和等于360°
11、*行四边形判定定理1
12、*行四边形判定定理3
13、矩形判定定理2
14、菱形面积=对角线乘积的一半,即S=(a×b)÷2
15、正方形性质定理1
16、三角形中位线定理
17、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
18、混合运算法则:先乘方,后乘除,最后加减。
19、性质定理1
20、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
21、性质定理3
22、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
23、圆是定点的距离等于定长的点的集合
24、圆的外部可以看作是圆心的距离大于半径的点的集合
25、同圆或等圆的半径相等
26、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
28、添括号法则
29、垂径定理
30、圆是以圆心为对称中心的中心对称图形
31、解一元一次方程的一般步骤:
32、普查与抽样调查
33、切割线定理
34、有关数轴
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、倒数:乘积为1的两个数互为倒数,0没有倒数。
37、内公切线长=d-(R-r)
38、三角形的分类
39、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
40、三角形内角和定理:三角形三个内角的和等于180°
41、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
42、判定:
43、性质:矩形的四个角都是直角,矩形的对角线相等
44、s菱=争6(n、6分别为对角线长)
45、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
46、2整式的加减
47、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
48、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
49、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
50、多边形对角线的条数:
51、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
52、定理:相交两圆的连心线垂直*分两圆的公共弦
53、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
54、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
55、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
56、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
57、圆的有关性质
58、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
59、直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
60、由绝对值的定义可知:
61、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
62、有理数中仍然有:乘积是1的两个数互为倒数。
63、对角线相等的菱形;
64、直线外一点与直线上各点连接的所有线段中,垂线段最短。
65、同位角相等,两直线*行。
66、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
67、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
68、推论2有一个角等于60°的等腰三角形是等边三角形。
69、多边形内角和定理n边形的内角的和等于(n-2)×180°。
70、推论夹在两条*行线间的*行线段相等。
71、*行四边形判定定理2两组对边分别相等的四边形是*行四边形。
72、矩形判定定理2对角线相等的*行四边形是矩形。
73、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
74、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
75、定理1关于中心对称的两个图形是全等的
76、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
77、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。
78、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半。
79、(2)合比性质:
80、(3)等比性质:
81、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
82、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
83、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
84、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
85、①两圆外离d﹥R+r。
86、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
87、换元法
88、面积法
89、运算顺序:A、高级运算到低级运算;B、(同级运算)从“左”到“右”(如5÷×5);C、(有括号时)由“小”到“中”到“大”。
90、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
91、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
92、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
93、两条*行线被第三条直线所截,内错角相等。(两直线*行,内错角相等)
94、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
95、*移的性质
96、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。
97、X轴:水*的数轴叫X轴或横轴。向右方向为正方向。
98、原点:两个数轴的交点叫做*面直角坐标系的原点。
99、点到轴及原点的距离:
100、不等式的解法:
六年级上册数学知识点总结 40句菁华(扩展5)
——数学知识点 100句菁华
1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、长方形和正方形是特殊的*行四边形。
5、①相同分母的分数相加、减:分母不变,只和分子相加、减。
6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
7、有理数加法的运算律:
8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
10、有理数中仍然有:乘积是1的两个数互为倒数。
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
12、圆方程
13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
14、从个位减起;
15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
16、哪一位上乘得的积满几十就向前进几。
17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
20、解方程;
21、除法各部分之间的关系:
22、乘法各部分的关系:
23、什么是名数?
24、什么是复名数?
25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
26、环形面积=大圆–小圆=πR2-πr2
27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
34、学生在动手操作中,可以画出并能计算出图形的周长。
35、概念和分类
36、基本规律
37、鸡兔同笼的解题思路
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合
41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
42、直角三角形斜边上的中线等于斜边上的一半
43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
44、*行四边形性质定理1 *行四边形的对角相等
45、*行四边形性质定理2 *行四边形的对边相等
46、推论 夹在两条*行线间的*行线段相等
47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形
48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比
52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
53、集合的中元素的三个特性:
54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
55、语言描述法:例:{不是直角三角形的三角形}
56、有余数的除法: 被除数=商×除数+余数
57、竖式:
58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。
61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.
62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
67、用字母表示数的写法
68、列方程解答应用题的步骤
69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
73、怎样找准分数应用题中单位“1”
74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)
75、奇数、偶数、质数、合数(正整数自然数)
76、忽视零向量致误
77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
78、单项式与多项式
79、指数
80、1柱、锥、台、球的结构特征
81、2空间几何体的三视图和直观图
82、2.直线、*面*行的判定及其性质
83、3直线、*面垂直的判定及其性质
84、3.1直线与*面垂直的判定
85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形
86、有理数和无理数统称实数.
87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.
88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
89、一个数与0相加,仍得这个数。
90、方程与方程组
91、一元二次方程的二次函数的关系
92、同角或等角的余角相等——余角=90-角度。
93、逆定理
94、矩形性质定理1
95、等腰梯形判定定理
96、判定定理3
97、性质定理3
98、圆的外部可以看作是圆心的距离大于半径的点的集合
99、切割线定理
100、扇形面积公式:S扇形=n兀R^2/360=LR/2
六年级上册数学知识点总结 40句菁华(扩展6)
——高三数学知识点总结 40句菁华
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。
4、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
5、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
6、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
7、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.
8、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
9、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
10、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
11、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:
12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
13、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.
14、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.
15、导数与极值、导数与最值:
16、直线方程:高考时不单独命题,易和圆锥曲线结合命题
17、圆方程
18、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。
19、数列的函数特征
20、复合函数的有关问题
21、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
22、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
23、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
24、圆柱体:
25、拟柱体
26、圆柱
27、记准均值、方差、标准差公式;
28、求概率时,正难则反(根据p1+p2+……+pn=1);
29、注意计数时利用列举、树图等基本方法;
30、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为
31、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°
32、已知三边,或两边及其夹角用余弦定理
33、圆锥体:
34、写出点M的集合;
35、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
36、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
37、圆锥曲线:
38、导数、导数的应用(高考必考)
39、圆锥曲线
40、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分
六年级上册数学知识点总结 40句菁华(扩展7)
——高考数学知识点总结 40句菁华
1、简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?
2、求解与函数有关的问题易忽略定义域优先的原则。
3、解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?
4、在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。
5、应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。
6、反正弦、反余弦、反正切函数的取值范围分别是
7、你还记得某些特殊角的三角函数值吗?
8、.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量*行,但与任意向量都不垂直。
9、是向量与*行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。
10、对不重合的两条直线
11、直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。
12、三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?
13、利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?
14、解析几何问题的求解中,*面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?
15、你掌握了空间图形在*面上的直观画法吗?(斜二测画法)。
16、线面*行和面面*行的定义、判定和性质定理你掌握了吗?线线*行、线面*行、面面*行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种*行之间转换的条件是什么?
17、线面*行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面*行的判定定理易把条件错误地记为”一个*面内的两条相交直线与另一个*面内的两条相交直线分别*行”而导致证明过程跨步太大。
18、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
19、你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?
20、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。
21、正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?
22、函数的图象的*移,方程的*移以及点的*移公式易混:
23、形如的周期都是,但的周期为。
24、正弦定理时易忘比值还等于2R。
25、解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达。(①设出变量,写出目标函数②写出线性约束条件③画出可行域④作出目标函数对应的系列*行线,找到并求出最优解⑦应用题一定要有答。)
26、异面直线所成角利用“*移法”求解时,一定要注意*移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。
27、求概率时,正难则反(根据p1+p2+……+pn=1);
28、函数的基本概念
29、如果函数f(x)在开区间(a,b)内每一点都可导,其导数值在(a,b)内构成一个新的函数,叫做f(x)在开区间(a,b)内导数,记作f’(x).
30、函数的导数与导数值的区别与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.
31、求导
32、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
33、Venn图:
34、(1) (a>;0,a≠1,b>;0,n∈R+); (2) l og a N= ( a>;0,a≠1,b>;0,b≠1);
35、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
36、做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。
37、棱柱及其性质、*行六面体与长方体及其性质。这些知识你掌握了吗?(注意运用向量的方法解题)
38、球及其性质;经纬度定义易混。经度为二面角,纬度为线面角、球面距离的求法;球的表面积和体积公式。这些知识你掌握了吗?
39、二项式展开式的通项公式、n次独立重复试验中事件A发生k次的概率易记混。
40、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
初中数学知识点总结 100句菁华五年级上册数学知识点 60句菁华六年级上册数学知识点 60句菁华六年级数学上册知识点 60句菁华二年级上册数学知识点 50句菁华五年级上册数学知识点 50句菁华八年级上册数学知识点 50句菁华六年级数学上册知识点 50句菁华六年级上册数学知识点 50句菁华初中数学知识点总结 50句菁华数学七年级上册知识点 50句菁华高等数学知识点总结 50句菁华高中数学知识点总结 50句菁华七年级下册数学知识点 40句菁华七年级下册数学知识点总结 40句菁华七年级下册数学知识点总结归纳 40句菁华三年级上册数学的知识点归纳 40句菁华三年级上册数学知识点总结 40句菁华二年级下册数学知识点 40句菁华六年级下册数学知识点归纳 40句菁华六年级数学下册知识点 40句菁华六年级上册数学复习资料 40句菁华小学四年级上册数学知识点总结 40句菁华数学知识点总结 40句菁华高三数学知识点总结 40句菁华高考数学知识点总结 40句菁华七年级上册数学知识点 30句菁华五年级数学知识点 30句菁华六年级语文下册知识点 30句菁华
人生哲理名言名句 200句菁华冬至朋友圈经典祝福语 100句菁华立春与春节祝福语 100句菁华简洁的爱情的语句摘录 100句菁华刷爆朋友圈熬夜短句 60句菁华最火的个性签名 60句菁华进火祝福语 60句菁华八月十五的祝福语 50句菁华励志名人名言警句 50句菁华学生会招新标语 50句菁华安全生产月活动宣传标语 50句菁华宣传企业文化的标语 50句菁华庆祝圣诞节祝福寄语 50句菁华护士节祝福语短句 50句菁华提醒的温馨句子 50句菁华最伤感短句子 50句菁华最火谷雨节气的说说 50句菁华爱国诗句有哪些 50句菁华
经典富含哲理句子摘录 50句菁华自信自强的名言 50句菁华超好听的网名 50句菁华适合自己生日发的句子 50句菁华鼓励高三高考加油的句子 50句菁华五一劳动节表扬小孩很棒的句子 40句菁华儿子小学毕业典礼祝福语 40句菁华内心造句 40句菁华写重阳节的诗句 40句菁华夏天立夏问候短信 40句菁华对大学毕业生的祝福语 40句菁华小学毕业寄语给孩子一句话 40句菁华晚安祝福语大全女朋友 40句菁华给友人的新婚祝福语 40句菁华老师夸学生的句子 40句菁华销售月初正能量的句子 40句菁华高速公路交通安全的宣传语 40句菁华2021正能量的话励志的语句 30句菁华