位置 > 首页 > 句子 >

六年级上册数学知识点 60句菁华

日期:2022-12-02 00:00:00

1、同分母分数加减法计算方法:

2、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

3、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

4、分数乘整数的计算方法

5、分数乘分数的的计算方法

6、倒数的意义

7、已知单位“1”用乘法,求单位“1”用除法;

8、正比例和反比例:

9、大圆的半径等于小圆直径,则大圆面积是小圆面积的(__)倍,小圆周长是大圆周长的(__)。

10、圆的周长是它的直径的π倍。(__)

11、圆内最长的线段是直径。(__)

12、3.14(__)π

13、14×8=25.12 3.14×9=28.26 3.14×16=50.24 3.14×25=78.50

14、求阴影部分的周长:总体思路,记住一点,周长的概念,所有围成这个图形的线段或曲线的长度之和。所以求阴影部分的周长时,首先把阴影部分这个图形的轮廓画出来,找出这个图形都由哪些线段、哪些曲线组合起来的。再分别求出这些线段、曲线的长度,最后相加。比如,这个图形:

15、已知圆的周长,求圆的面积S=π(C÷π÷2)?

16、正方形里最大的圆。两者联系:边长=直径;圆的面积=78.5%正方形的面积

17、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

18、应纳税额。计算方法:营业额×税率

19、利息=本金×利率×时间,本金=利息÷利率÷时间,利率=利息÷本金÷时间,时间=利息÷本金÷利率

20、两种数量比较

21、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

22、求每份数的方法和÷分数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数

23、相遇问题速度和=路程÷相遇时间

24、速度×时间=路程路程÷速度=时间路程÷时间=速度

25、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

26、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

27、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

28、分数与除法的关系:除法中的被除数相当于分数的分子,除数相等于分母。

29、只修改970405的某一个数字,就可使修改后的六位数能被225整除,修改后的六位数是_____。

30、小数与百分数互化的规则:

31、百分数与分数互化的规则:

32、常用的分数、小数及百分数的互化

33、求一个数的百分之几是多少

34、已知一个数的百分之几是多少,求这个数?

35、纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。国家用收来的税款发展经济、科技、教育、文化和国防安全。纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。

36、银行存款税后利息的计算公式:利息=本金×利率×时间×(1-5%)

37、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

38、当符合什么条件时,错误才能变成正确?

39、位置的表示方法: A(列,行)如:A(3,4)表示A点在第三列第四行。

40、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

41、倍数和因数:如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数。倍数和因数是相互依存的。 因为35能被7整除,所以35是7的倍数,7是35的因数。

42、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

43、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

44、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。

45、比和除法、分数的联系:

46、根据比与除法、分数的关系,可以理解比的后项不能为0。

47、化简比:

48、用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

49、数不仅可以用来表示数量和顺序,还可以用来编码。

50、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码;(2)第3、4位数字表示:所在城市的代码;

51、常用统计图的优点:

52、确定物*置的方法:

53、同分母分数的加减法:同分母分数相加、减,分母不变,只把分子相加减。

54、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

55、分数乘法:分数的分子与分子相乘,分母与分母相乘,能约分的要先约分。

56、倒数:乘积是1的两个数叫做互为倒数。

57、圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示

58、日常应用:

59、圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

60、“方程”思想


六年级上册数学知识点 60句菁华扩展阅读


六年级上册数学知识点 60句菁华(扩展1)

——六年级上册数学知识点 50句菁华

1、整数加法计算法则:

2、小数乘法法则:

3、小数乘法意义:

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知A比B多(或少)几分之几,求A的解题方法

6、物*置的相对性

7、理解比例的意义和基本性质,会解比例。

8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

9、在*面图上标出物*置的方法:

10、绘制路线图的方法:

11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

17、求一个数比另一个数多(或少)几分之几(或百分之几)?

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、根据比的基本性质,可以把比化成最简单的整数比。

20、被减数-减数=差被减数-差=减数差+减数=被减数

21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

24、假分数与带分数的互化:

25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、已知一个数的百分之几是多少,求这个数?

28、浓度问题

29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

34、被除数 相当于分子,除数相当于分母。

35、减法的性质:

36、分数除法应用题:

37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

39、根据比的基本性质,可以把比化成最简单的整数比。

40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

42、常用统计图的优点:

43、使学生能在方格纸上用数对确定位置;

44、使学生理解倒数的意义,掌握求倒数的方法;

45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

50、“数与形相结合”的思想


六年级上册数学知识点 60句菁华(扩展2)

——六年级上册数学知识点总结 40句菁华

1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

4、圆周率实验:

5、区分周长的一半和半圆的周长:

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

7、取近似数的方法:

8、无限小数:小数部分的位数是无限的小数,叫做无限小数。

9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

22、分数的分类

23、分子分母是互质数的分数叫做最简分数。

24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

25、圆的面积=圆周率×半径×半径

26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

29、分数除法:分数除法是分数乘法的逆运算。

30、你还能得到哪些信息?

31、文化教育支出了多少元?购买衣物支出了多少元?

32、因为零不能作除数,所以分数的分母不能为零。

33、被除数 相当于分子,除数相当于分母。

34、整数加法计算法则:

35、同分母分数加减法计算方法:

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、用字母表示数的意义和作用

38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

39、、长方体

40、圆锥体


六年级上册数学知识点 60句菁华(扩展3)

——六年级下册数学知识点归纳 40句菁华

1、常见的圆柱圆锥解决问题:

2、正方形判定定理

3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。

4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

5、整十整百数乘一位数

6、比较大小的方法:

7、多位数的写法

8、多位数的大小比较:

9、“万”“亿”作单位的数:

10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

11、按比例分配:

12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

14、判断这两个量的比值是否一定,比值一定就成正比例关系;

15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)

16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

17、以长方形的宽为底面周长,长为高。

18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

21、圆锥的特征:

22、圆锥的相关计算公式:

23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下

25、摄氏度

26、(1)圆柱周围的面叫做侧面。

27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。

28、温馨提示:圆柱的底面是圆形,面不是椭圆。

29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

32、一个圆柱占空间的大小,叫做这个圆柱的体积。

33、圆锥是由一个底面和一个侧面两部分组成。

34、温馨提示:

35、百分数。

36、统计。

37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

38、两条*行线之间的距离处处相等。

39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?

40、统计表制作步骤:


六年级上册数学知识点 60句菁华(扩展4)

——中考数学知识点 60句菁华

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


六年级上册数学知识点 60句菁华(扩展5)

——生物八年级上册知识点 50句菁华

1、寄生在人体表面或体内,使人患病。如艾滋病就是由一种病毒引起的,它寄生在人体内的淋巴细胞中,使人体免疫能力下降。

2、提供维生素:多数酵母菌含有丰富的维生素,可提供医药用。

3、生产沼气;利用秸杆、粪便和产甲烷细菌等产生沼气。

4、在采油、冶金、治理环境污染等方面也有广阔的应用前景。

5、动物的种类多样,根据体内有没有脊椎,可以分为两大类:脊椎动物和无脊椎动物。

6、鱼类的代表动物是鲫鱼,鱼类的特征是终身生活在水中,用鳃呼吸,用鳍游泳。

7、鸟类适天飞行的特点如下:

8、腔肠动物的特点是有口无*。举例海蜇、海葵、珊瑚虫等。

9、蚯蚓的运动是靠肌肉的交替收缩和舒张并在刚毛的辅助下完成的;呼吸是靠湿润的体壁进行的。将两条蚯蚓分别放于光滑的玻璃板和粗糙的硬纸板上,运动速度在硬纸板上的快。

10、生物与生物之间的关系:捕食、竞争、合作、寄生。

11、1腔肠动物的特征

12、2水螅

13、1扁形动物的特征

14、2涡虫(前端三角形,有黑色眼点感光)

15、4蛭

16、软体动物

17、2昆虫的结构特征

18、3蝗虫的结构特征

19、1两栖动物的主要特征

20、动物的运动

21、1动物的运动形式

22、社会行为

23、1社会行为的特征

24、3信息交流的意义

25、1维持生态*衡

26、6细菌和真菌在自然界中的作用

27、7人类对细菌和真菌的利用

28、2病毒的结构

29、联系生产实际。

30、每一组肌肉的两端分别附着在不同骨上,与骨相连的肌肉总是由两组肌肉相互配合活动的。例如:屈肘时,肱二头肌收缩,肱三头肌舒张,伸肘时则相反。

31、作为分解着参与物质循环

32、细菌、真菌与食品的制作 发酵技术的应用及其产品

33、细菌与真菌与环境的保护:污水处理厂

34、单细胞生物:眼虫、大肠杆菌、酵母菌、草履虫、衣藻、变形虫

35、观察草履虫时,棉花纤维使草履虫得运动速度变慢,利于观察。从培养液的表层吸一滴是因为草履虫需要氧气,都聚集在培养液的表层。

36、按行为表现不同可将动物行为分为:攻击行为、取食行为、防御行为、繁殖行为、迁徙行为等;而按获得途径不同可分为:先天性行为和学习行为。

37、四大家鱼是:青鱼、鲢鱼、草鱼和鳙鱼。

38、鳃丝既多又细,其作用是大大增加了跟水的接触面积,促进血和外界进行气体交换。

39、水由鱼口流入鳃,然后由鳃盖后缘(鳃孔)流出。

40、切片、涂片、装片的区别P42

41、昆虫身体分为头、胸、腹三部分,一般有3对足,2对翅。蜘蛛、蜈蚣、虾、蟹等都不是昆虫,但它们都是节肢动物。节肢动物的特点是:身体由很多体节构成,体表有外骨骼,足和触角分节。

42、两栖动物:幼体生活在水中,用鳃呼吸,经变态发育成为成体,营水陆两栖生活,用肺呼吸,同时用皮肤辅助呼吸。代表动物:青蛙、蟾蜍。

43、为保护生物多样性,我国相继颁布的法律和文件:《中华人民共和国森林法》、《中华人民共和国野生动物保护法》、《*自然保护纲要》。我国还是最先加入国际《保护生物多样性公约》的国家之一。

44、水生动物最常见的是鱼,此外,还有 ①腔肠动物,如海葵、珊瑚;②软体动物,如乌贼、章鱼; ③甲壳动物,如虾、蟹;④海豚(哺乳动物)、龟(爬行动物)等其他水生动物

45、兔:体表被毛,用肺呼吸,心脏四腔,体循环和肺循环两条途径,体温恒定,牙分门齿和臼齿,盲肠发达(在细菌作用下,有助于植物纤维质的消化),大脑发达, 四肢灵活

46、足够的食物、水分、隐蔽地是陆生动物生存的基本环境条件

47、哺乳动物的运动系统由骨骼和肌肉组成【或骨、关节、骨骼肌】

48、按行为表现不同可将动物行为分为取食行为、防御行为、繁殖行为、迁徙行为等;而按获得途径不同可分为先天性行为和学习行为。先天性行为指动物生来就有的、由体内遗传物质决定的行为,对维持最基本的生存必不可少,如蜘蛛织网等。而学习行为则是指在遗传因素的基础上,通过环境的作用,由生活经验和学习而获得的行为。动物越高等,学习能力越强,适应环境能力也就越强,对生存也就越有意义

49、生物反应器:利用生物做“生产车间”,生产人类所需的某些物质,这个生物或生物的某个器官即生物反应器。目前最理想的生物反应器是“乳房生物反应器”。 它可节省费用,简化程序和减少污染

50、蛔虫:(蛔虫适于寄生的特点4条,红色字)


六年级上册数学知识点 60句菁华(扩展6)

——高三数学知识点总结 40句菁华

1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系。

4、判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.

5、三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.

6、利用重要不等式以及变式等求函数的最值时,务必注意a,b (或a,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).

7、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的倒数)或知直线过点,常设其方程为.

8、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是

9、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.

10、圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

11、在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解.特别是:

12、要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等),以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.

13、计算直线与*面所成的角关键是作面的垂线找射影,或向量法(直线上向量与*面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与*面上以斜足为顶点的角的两边所成角相等斜线在*面上射影为角的*分线.

14、球体积公式。球表面积公式,是两个关于球的几何度量公式.它们都是球半径及的函数.

15、导数与极值、导数与最值:

16、直线方程:高考时不单独命题,易和圆锥曲线结合命题

17、圆方程

18、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)。

19、数列的函数特征

20、复合函数的有关问题

21、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;

22、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。

23、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;

24、圆柱体:

25、拟柱体

26、圆柱

27、记准均值、方差、标准差公式;

28、求概率时,正难则反(根据p1+p2+……+pn=1);

29、注意计数时利用列举、树图等基本方法;

30、在△ABC中,∠C=90°,a=1,c=4,则sinA的值为

31、已知α为锐角,且,则α的度数是()A、30°B、45°C、60°D、90°

32、已知三边,或两边及其夹角用余弦定理

33、圆锥体:

34、写出点M的集合;

35、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

36、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

37、圆锥曲线:

38、导数、导数的应用(高考必考)

39、圆锥曲线

40、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。高考必考,10分


六年级上册数学知识点 60句菁华(扩展7)

——高二数学知识点归纳 40句菁华

1、数列的前n项和公式Sn:

2、等差数列的前n项和公式:Sn= Sn= Sn=

3、三个数成等差的设法:a-d,a,a+d;四个数成等差的`设法:a-3d,a-d,,a+d,a+3d

4、裂项法求和:如an=1/n(n+1)

5、在等差数列 中,有关Sn 的最值问题--常用邻项变号法求解:

6、主要思想与方法:

7、*面与*面

8、不等式证明的依据

9、逻辑连结词;

10、映射;

11、函数;

12、互为反函数的函数图象间的关系;

13、指数概念的扩充;

14、指数函数;

15、对数函数。

16、数列;

17、任意角的三角函数;

18、正弦函数、余弦函数的图象和性质;

19、周期函数;

20、正切函数的图象和性质;

21、斜三角形解法举例。

22、线段的定比分点;

23、不等式的基本性质;

24、直线的倾斜角和斜率;

25、曲线与方程的概念;

26、由已知条件列出曲线方程;

27、直线的倾斜角的范围是在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

28、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

29、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

30、直线被圆锥曲线截得的弦长公式:

31、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

32、导数的定义:在点处的导数记作.

33、用导数研究函数的最值

34、生活中常见的函数优化问题

35、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

36、随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验。

37、离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归。

38、三角形三角关系:A+B+C=180°;C=180°-(A+B);

39、正弦定理的变形公式:

40、,


六年级上册数学知识点 60句菁华(扩展8)

——中考七年级数学知识点 30句菁华

1、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。

2、把多项式中的同类项合并成一项,叫做合并同类项。

3、具有相反意义的量

4、有理数的概念

5、在正数前面加上负号“-”的数叫做负数(negativenumber).

6、在直线上任取一个点表示数0,这个点叫做原点(origin).

7、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

8、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

9、正数大于0,0大于负数,正数大于负数.

10、有理数减法法则

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

12、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

13、根据有理数的乘法法则可以得出

14、把一个大于10数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法.

15、射线的特征:“向一方无限延伸,它有一个端点。”

16、三角形中的主要线段:三角形的高、角*分线、中线。注意:①三角形的高、角*分线、中线都是线段。②高、角*分线、中线的应用。

17、三线八角:对顶角(相等),邻补角(互补),同位角,内错角,同旁内角。

18、垂直公理:过一点有且只有一条直线与已知直线垂直。

19、垂线段最短。

20、*行线的判定:

21、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。

22、*行线的性质:

23、命题:判断一件事情的语句叫命题。

24、关于尺规作图:尺规作图是指只用圆规和没有刻度的直尺来作图。

25、实数的分类正有理数有理数零有限小数和无限循环小数

26、相反数

27、倒数

28、算术*方根

29、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。

30、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1