日期:2022-12-03 00:00:00
1、都是数字与字母的乘积的代数式叫做单项式。
2、单独一个数或一个字母也是单项式。
3、只含有字母因式的单项式的系数是1或―1。
4、单项式的系数包括它前面的符号。
5、单项式的系数是1或―1时,通常省略数字“1”。
6、多项式中的每一个单项式叫做多项式的项。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
8、单项式和多项式统称为整式。
9、单项式或多项式都是整式。
10、几个整式相加减的一般步骤:
11、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。
12、底数相同的幂叫做同底数幂。
13、此法则也可以逆用,即:am+n = am﹒an。
14、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。
15、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。
16、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
17、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数,即:
18、系数相乘时,注意符号。
19、单项式乘以单项式的结果仍是单项式。
20、积是一个多项式,其项数与多项式的项数相同。
21、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
22、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。
23、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
24、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
25、互为余角和互为补角和
26、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
27、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
28、(1)等腰三角形:对称轴,性质
29、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
30、事件的分类:,会求各种事件的概率
31、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
32、*行公理:如果两条直线都和第三条直线*行,那么这两条直线也*行。简述:*行于同一条直线的两条直线*行。补充定理:如果两条直线都和第三条直线垂直,那么这两条直线也*行。简述:垂直于同一条直线的两条直线*行。
33、等腰三角形是轴对称图形,顶角*分线所在直线是它的对称轴。
34、等腰三角形的两个底角相等(简称“等边对等角”)。
35、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
36、推论:在同一*面内,如果两条直线都垂直于同一条直线,那么这两条直线*行。
37、*行线的性质:
38、*面上不相重合的两条直线之间的位置关系为_______或________
39、实数与数轴上点的关系:
40、算术*方根
七年级下册数学知识点 40句菁华扩展阅读
七年级下册数学知识点 40句菁华(扩展1)
——七年级下册数学知识点总结 40句菁华
1、按性质符号分类:
2、对于数轴上的任意两个点,靠右边的点所表示的数较大。
3、乘方与开方
4、有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b) 。
5、*面直角坐标系:在*面内,两条互相垂直且有公共原点的数轴组成*面直角坐标系。
6、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
7、坐标:对于*面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标,记作P(a,b)。
8、对称点的坐标特点①关于x轴对称的两个点,横坐标相等,纵坐标互为相反数;②关于y轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、如果两个点的横坐标相同,则过这两点的直线与y轴*行、与x轴垂直;如果两点的纵坐标相同,则过这两点的直线与x轴*行、与y轴垂直。如果点P(2,3)、Q(2,6),这两点横坐标相同,则PQ∥y轴,PQ⊥x轴;如果点P(-1,2)、Q(4,2),这两点纵坐标相同,则PQ∥x轴,PQ⊥y轴。
10、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
11、求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。
12、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。
14、*移:
15、大于0的数叫做正数(positive number)。
16、在正数前面加上负号“-”的数叫做负数(negative number)。
17、人们通常用一条直线上的点表示数,这条直线叫做数轴(number axis)。
18、正数大于0,0大于负数,正数大于负数。
19、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
20、有理数减法法则
21、有理数乘法法则
22、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
23、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
24、根据有理数的乘法法则可以得出
25、做有理数混合运算时,应注意以下运算顺序:
26、把一个大于10数表示成a×10n 的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。
27、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
28、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
29、单项式中的数字因数叫做这个单项式的系数(coefficient)。
30、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly term)。
31、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
32、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
33、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一*面内,它们是*面图形(planefigure)。
34、面与面相交的地方形成线(line),线和线相交的地方是点(point)。
35、等角的补角相等,等角的余角相等。
36、相反数的几何意义
37、单项式的系数:是指单项式中的数字因数;
38、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
39、单项式和多项式统称为整式。
40、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
七年级下册数学知识点 40句菁华(扩展2)
——七年级下册数学知识点总结归纳 40句菁华
1、相反数
2、*方根
3、乘法
4、单项式的数字因数叫做单项式的系数。
5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
6、几个单项式的和叫做多项式。
7、多项式中不含字母的项叫做常数项。
8、整式不一定是单项式。
9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。
10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。
11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
13、积是一个多项式,其项数与多项式的项数相同。
14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。
16、*行线的性质:两直线*行。(线的*行
17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。
18、会判轴对称图形,会根据画对称图形,(或在方格中画)
19、常见的轴对称图形有:
20、垂直三要素:垂直关系,垂直记号,垂足。
21、垂线段最短。
22、命题:判断一件事情的语句叫命题。
23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)
27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
28、钝角三角形有两条高在外部。
29、三个角对应相等的两个三角形不一定全等。
30、两边及一角对应相等的两个三角形不一定全等。
31、一条斜边和一直角边对应相等的两个三角形全等。
32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
33、全等图形
34、两个能够重合的图形称为全等图形。
35、全等三角形
36、若Y随X的变化而变化,则X是自变量Y是因变量。
37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间
38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。
39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;
40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;
七年级下册数学知识点 40句菁华(扩展3)
——七年级上册数学知识点 30句菁华
1、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。
2、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
3、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.
4、大于0的数叫做正数(positive number)。
5、整数和分数统称为有理数(rational number)。
6、有理数减法法则
7、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
8、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
9、有理数除法法则
10、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数(approximate number)。
11、把多项式中的同类项合并成一项,叫做合并同类项。
12、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
13、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程(equation)。
14、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程(linear equation withone unknown)。
15、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间
16、我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
17、几何体简称为体(solid)。
18、角∠(angle)也是一种基本的几何图形。
19、几何图形的投影问题
20、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
21、线段、射线、直线的表示方法
22、正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
23、在有理数的加法中,
24、运算顺序:先算乘方,再算乘除,最后算加减。如果是同级运算,则按从左到右的运算顺序计算。如果有括号,先算小括号,再算中括号,最后算大括号。
25、不含字母的项叫做常数项。
26、单项式和多项式统称为整式。
27、所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
28、方程是等式,等式不一定是方程。
29、分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
30、解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
七年级下册数学知识点 40句菁华(扩展4)
——七年级生物上册知识点 60句菁华
1、生物圈的范围:
2、生态系统的组成:
3、植物是生态系统中的,动物是生态系统中的的分解者。
4、生态系统的概念:在一定区域内,与形成的统一的整体物链积累。
5、写出显微镜各部分的结构及作用
6、显微镜的操作:
7、能够共同完成一种或几种生理功能的多个器官按照一定的次序组成在一起构成八大系统:消化系统、呼吸系统、循环系统、泌尿系统、运动系统、神经系统、生殖系统、内分泌系统。
8、交换吸附:根部细胞表面吸附的阳离子、阴离子与土壤溶液中阳离子、阴离子发生交换的过程就叫交换吸附。
9、合理灌溉的依据:不同植物对各种必需的矿质元素的需要量不同;同一种植物在不同的生长发育时期,对各种必需的矿质元素的需要量也不同。
10、生物能排出体内产生的废物(植物落叶,动物和人出汗、呼吸和排尿);
11、调查的注意事项——你所看到的生物,都要如实记录。
12、观察的物像与实际图像相反。如果是实物标本d,那么视野里是P,即上下,左右分别颠倒一次。
13、植物细胞与动物细胞的相同点:都有细胞膜、细胞质、细胞核。
14、病毒的种类
15、绿色植物:藻类、苔藓、蕨类,种子植物四大类群。
16、种子的萌发(P88)
17、种子萌发的过程
18、显微镜成像的规律:上下颠倒,左右相反(字母“p”在显微镜下看到的应是“d”。
19、生物能生长和繁殖
20、叶绿体:(把光能转变成化学能并贮存在有机物中即光合作用的场所——“生产车间”,是能量转换器)。
21、如果将生态系统中的每一个环节中的所有生物分别称重,在一般情况下数量做大的应该是生产者。
22、一个生态系统中,往往有很多条食物链,它们彼此交错,形成了食物网。物质和能量沿着食物链和食物网流动的。有毒物质的积累是沿着食物链营养级别的升高而不断增加的。营养级越高,生物数量越少;营养级越高,有毒物质沿食物链积累(富集)。
23、生态系统的类型:森林生态系统、草原生态系统、农田生态系统、海洋生态系统、城市生态系统等
24、表达和交流
25、生物圈的范围:大气圈的底部:可飞翔的鸟类、昆虫、细菌等
26、放在显微镜下观察的生物标本,应该薄而透明,光线能透过,才能观察清楚。因此必须加工制成玻片标本。
27、植物细胞与动物细胞的相同点:都有细胞膜、细胞质、细胞核
28、基因是DNA上的一个具有特定遗传信息的片断
29、绿色开花植物的六大器官
30、植物的组织:分生组织、保护组织、营养组织、输导组织等
31、孢子是一种生殖细胞。
32、藻类植物通过光合作用制造的有机物可以作为鱼的饵料,放出的氧气除供鱼类呼吸外,而且是大气中氧气的重要来源。
33、幼根的生长
34、植株生长需要的营养物质:氮、磷、钾
35、传粉和*(课本103)
36、根的生长一方面靠分生区增加细胞的数量,一方面要靠伸长区细胞体积的增大。
37、年轮:
38、是否需要转氨基是看身体需不需要
39、培养基:物理状态:固体、半固体、液体
40、冬小麦在秋冬低温条件下细胞活动减慢物质消耗减少单细胞内可溶性还原糖的含量明显提高细胞自由水比结合水的比例减少活动减慢是适应环境的结果
41、用氧十八标记的水过了很长时间除氧气以外水蒸气以外二氧化碳和有机物中也有标记的氧十八
42、蔗糖不能出入半透膜
43、水的光解不需要酶,光反应需要酶,暗反应也需要酶
44、一切感觉产生于大脑皮层
45、生态系统的成分包括非生物的物质和能量、生产者和分解者
46、判断(1)不同种群的生物肯定不属于同一物种×(例:上海动物园中的猿猴和峨眉山上的猿猴是同一物种不是同一群落)
47、达尔文认为生命进化是由突变、淘汰、遗传造成的
48、mRNA→一条DNA单链→双链DNA分子
49、研究微生物的生长规律用液体培养基
50、发酵产品的分离和提纯⑴过滤和沉淀(菌体)
51、染色体除了含有DNA外还含有少量的RNA
52、竞争:两种生物生活在一起,由于争夺资源、空间等而发生斗争的现象,叫做~。(例如:大草履虫和小草履虫)7、捕食:一种生物以另一种生物为食。
53、非生物因素对生物的影响:
54、警戒色:某些有恶臭或毒刺的动物所具有的鲜艳色彩和斑纹。
55、适应的相对性:指生物对环境的适应只是一定程度的适应,不是绝对的。
56、测定种子的发芽率(会计算)和抽样检测
57、叶片的结构
58、光合作用概念:绿色植物利用光提供的能量,在叶绿体中合成了淀粉等有机物,并且把光能转变成化学能,储存在有机物中,这个过程叫光合作用。
59、光合作用意义:绿色植物通过光合作用制造的有机物,不仅满足了自身生长、发育、繁殖的需要,而且为生物圈中的其他生物提供了基本的食物来源、氧气来源、能量来源。
60、绿色植物通过光合作用,不断消耗大气中的二氧化碳,产生氧气,维持了生物圈中的碳氧*衡。
七年级下册数学知识点 40句菁华(扩展5)
——七年级数学下册第五章知识点整理 50句菁华
1、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ;
2、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,
3、*行线的判定:
4、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
5、ADBCADBC180°—∠1—∠2∠3+∠4
6、∠1=∠5或∠2=∠6或∠3=∠7或∠4=∠8
7、已知互补等量代换同位角相等,两直线*行
8、*行,证明如下:
9、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直*分线
10、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。
11、横轴、纵轴、原点:水*的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为*面直角坐标系的原点。
12、象限:两条坐标轴把*面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
13、特殊位置的点的坐标的特点
14、两条直线被第三条直线所截:
15、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。
16、*行线的性质:
17、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
18、必然事件发生的概率为1,记作P(必然事件)=1;
19、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
20、第三边取值范围:a—b
21、相关命题:
22、全等图形的大小(面积、周长)、形状都相同。
23、能够完全重合的两个图形是全等图形。
24、全等图形
25、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
26、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
27、学好数学最基础的就是把课本知识点及课后习题都掌握好。
28、数学要想学好,不琢磨是行不通的,遇到难题不能躲,研究明白了才能罢休。
29、含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组。
30、不等式的解:
31、一元一次不等式的解法:
32、不等式的解集在数轴上表示:
33、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
34、用一元一次不等式解答实际问题,关键在于寻找问题中的不等关系,从而列出不等式并求出不等式的解集,最后解决实际问题。
35、以基本事实:“同位角相等,两直线*行”证明: (1)“内错角相等,两直线*行”、“同旁内角互补,两直线*行”、“*行于同一条直线的两条直线*行”
36、单项式中所有字母的指数和叫做单项式的次数。
37、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
38、多项式中的每一个单项式叫做多项式的项。
39、多项式中不含字母的项叫做常数项。
40、一个多项式有几项,就叫做几项式。
41、多项式没有系数的概念,但有次数的概念。
42、单项式或多项式都是整式。
43、底数相同的幂叫做同底数幂。
44、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
45、系数相乘时,注意符号。
46、相同字母的幂相乘时,底数不变,指数相加。
47、运算时注意积的符号,多项式的每一项都包括它前面的符号。
48、积是一个多项式,其项数与多项式的项数相同。
49、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
50、(a+b)(a—b)=a2—b2,即:两数和与这两数差的积,等于它们的*方之差。
七年级下册数学知识点 40句菁华(扩展6)
——七年级数学下册知识点总结 50句菁华
1、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。
2、按定义分类:2.按性质符号分类:
3、各象限点的坐标特点①第一象限的点:横坐标0,纵坐标0;②第二象限的点:横坐标0,纵坐标0;③第三象限的点:横坐标0,纵坐标0;④第四象限的点:横坐标0,纵坐标0。
4、坐标轴上点的坐标特点①x轴正半轴上的点:横坐标0,纵坐标0;②x轴负半轴上的点:横坐标0,纵坐标0;③y轴正半轴上的点:横坐标0,纵坐标0;④y轴负半轴上的点:横坐
5、表示一个点(或物体)的位置的方法:一是准确恰当地建立*面直角坐标系;二是正确写出物体或某地所在的点的坐标。选择的坐标原点不同,建立的*面直角坐标系也不同,得到的同一个点的坐标也不同。
6、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
7、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
8、在含有未知数的不等式中,使不等式成立的未知数的值叫不等式的解,一个含有未知数的不等式的所有的解组成的集合,叫这个不等式的解集。不等式的解集可以在数轴上表示出来。求不等式的解集的过程叫解不等式。含有一个未知数,并且所含未知数的项的次数都是1,这样的不等式叫一元一次不等式。
9、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
10、两条直线被第三条直线所截:
11、垂直三要素:垂直关系,垂直记号,垂足
12、1.2
13、2.2直线*行的条件
14、1.2*面直角坐标系
15、2.2用坐标表示*移
16、3多边形及其内角和
17、几何图形
18、点、线、面、体
19、常见的几何体及其特点
20、棱柱及其有关概念:
21、整数:正整数、0、负整数,统称整数。
22、数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)
23、单项式的次数仅与字母有关,与单项式的系数无关。
24、多项式中的每一个单项式叫做多项式的项。
25、多项式中不含字母的项叫做常数项。
26、一个多项式有几项,就叫做几项式。
27、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。
28、此法则也可以逆用,即:am-n = am÷an(a≠0)。
29、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a≠0)。
30、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
31、系数相乘时,注意符号。
32、相同字母的幂相乘时,底数不变,指数相加。
33、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
34、运算时注意积的符号,多项式的每一项都包括它前面的符号。
35、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。
36、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
37、*方差公式中的a、b可以是单项式,也可以是多项式。
38、*方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
39、*行线的性质:
40、无理数
41、1三角形的边
42、提公因式法. 关键:找出公因式
43、十字相乘(x+p)(x+q)=x2+(p+q)x+pq
44、含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程(linear equations of two unknowns) 。
45、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.
46、二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:
47、一元一次不等式的解法:
48、检验一个数值是不是已知不等式的解,只要把这个数代入不等式,然后判断不等式是否成立,若成立,就是不等式的解;若不成立,则就不是不等式的解。
49、常见不等式的基本语言的意义:
50、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
七年级下册数学知识点 40句菁华(扩展7)
——八年级上册数学知识点 50句菁华
1、直角三角形全等的判定
2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。
3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4、定理1关于某条直线对称的两个图形是全等形
5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线
6、多边形内角和定理n边形的内角的和等于(n—2)×180°
7、*行四边形性质定理2*行四边形的对边相等
8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形
9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形
10、矩形性质定理1矩形的四个角都是直角
11、菱形性质定理1菱形的四条边都相等
12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
13、线段垂直*分线上的点与这条线段的两个端点的距离相等
14、等腰三角形的性质
15、运用公式法
16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。
17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。
18、比较法
19、公式法
20、定理1 在角的*分线上的点到这个角的两边的距离相等
21、推论 2 有一个角等于60°的等腰三角形是等边三角形
22、由坐标找点:例找点B( 3,-2 ) ?
23、关于坐标轴、原点的对称点:
24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。
26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。
27、因式分解
28、轴对称图形上对应线段相等、对应角相等。
29、点(x,y)关于x轴对称的点的坐标为(x,—y)
30、等边三角形的三个内角相等,等于60°,
31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。
32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。
33、同底数幂的除法
34、因式分解的思路与解题步骤:
35、分组分解法:
36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。
37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.
38、类比分数的通分得到分式的通分:
39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。
41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.
42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)
43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。
44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数
47、个体:组成总体的每一个考察对象称为个体、
48、对角线相等的*行四边形是矩形。
49、对角线互相垂直的*行四边形是菱形。
50、邻边相等的矩形是正方形。
七年级下册数学知识点 40句菁华(扩展8)
——初中七年级数学知识点 50句菁华
1、生活中的立体图形
2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、代数式
4、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
5、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
6、解一元一次方程的一般步骤:
7、普查与抽样调查
8、扇形统计图
9、整式的乘除的公式运用(六条)及逆运用(数的计算)。
10、整式的乘法公式(两条)。
11、互为余角和互为补角和
12、必然事件不可能事件,不确定事件
13、方法归纳:(1)求边相等可以利用
14、证明:
15、1周角=__________*角=_____________直角=____________.
16、*行线的性质:两直线*行,_________相等,________相等,________互补.
17、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
18、相反数:
19、有理数乘方的法则:
20、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
21、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
23、高线、中线、角*分线的意义和做法
24、正数:大于0的数。
25、负数:小于0的数。
26、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
27、整数:正整数、0、负整数,统称整数。
28、数轴的三要素:原点、正方向、单位长度。
29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
30、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
31、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5、a?b=a+(?b)减去一个数,等于加这个数的相反数。
32、乘积是1的两个数互为倒数。
33、乘法结合律:(ab)c=a(bc)
34、整式:单项式和多项式的统称叫整式。
35、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
36、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
37、若系数是带分数,要化成假分数。
38、在单项式中字母不可以做分母,分子可以。
39、单独的数“0”的系数是零,次数也是零。
40、在直线上任取一个点表示数0,这个点叫做原点(origin)。
41、有理数减法法则
42、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
43、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly
44、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
45、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
46、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
47、角∠(angle)也是一种基本的几何图形。
48、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
49、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
50、等角的补角相等,等角的余角相等。
七年级下册数学知识点 40句菁华(扩展9)
——数学七年级上册知识点 50句菁华
1、单项式:由数字和字母乘积组成的式子。单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,若①分母中不含有字母,②式子中含有加、减运算关系,也不是单项式.
2、几何图形
3、生活中的立体图形
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。若|a|=a,则a≥0;若|a|=-a,则a≤0。
6、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
7、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
8、去括号法则
9、角的度量
10、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
11、方程的解
12、移项:把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
13、解一元一次方程的一般步骤:
14、扇形统计图
15、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p
16、正数:大于0的数。
17、负数:小于0的数。
18、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
19、同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
20、乘法分配律:a(b+c)=ab+ac
21、两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
22、求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)
23、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
24、同号两数相加,取相同的符号,并把绝对值相加。
25、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
26、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
27、在直线上任取一个点表示数0,这个点叫做原点(origin).
28、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).
29、有理数的加法中,两个数相加,交换交换加数的位置,和不变.
30、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.
31、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等.
32、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.
33、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.
34、有理数除法法则
35、点、线、面、体的概念点动成线,线动成面,面动成体由*面和曲成围成一个几何体2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
36、所有的有理数都可以用分数表示,π不是有理数。
37、只有符号不同的两个数叫做互为相反数。(0的相反数是0)
38、在有理数的加法中,
39、科学记数法将一个数字表示成a×10的n次幂的形式,其中a是整数数位只有一位的数,n是正整数,这种中,a叫底数,叫做指数。当看记数方法叫科学记数法。
40、次数:单项式中所有的字母的指数和
41、几个单项式的和叫做多项式。
42、列方程是解决问题的重要方法,利用方程可以解出未知数。
43、括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
44、先看笔记后做作业。
45、利用数轴表示两数大小
46、可用字母表示为
47、有理数的乘法法则
48、倒数
49、乘方的概念求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。
50、如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。
七年级下册数学知识点 40句菁华(扩展10)
——8年级下册生物知识点 40句菁华
1、鱼类的代表动物是鲫鱼,鱼类的特征是终身生活在水中,用鳃呼吸,用鳍游泳。
2、鸟类的特征:体表被羽毛,前肢变为翼,体内有气囊,体温高而恒定。
3、蚯蚓的运动是靠肌肉的交替收缩和舒张并在刚毛的辅助下完成的;呼吸是靠湿润的体壁进行的。将两条蚯蚓分别放于光滑的玻璃板和粗糙的硬纸板上,运动速度在硬纸板上的快。
4、昆虫的特点是:身体分为头、胸、腹三部分,胸部有三对足和两对翅。
5、人在完成曲肘运动时,肱二头肌收缩,同时肱三头肌舒张,共同完成了这个运动。
6、动物的行为按表现可分为攻击行为、防御行为、繁殖行为、贮食行为等。
7、先天性行为指动物生来就有的,由遗传因素控制的。
8、白蚁的群体中有四种蚁,即工蚁、雄蚁、后蚁和兵蚁。四种蚁是喂养其它三种蚁的是工蚁。
9、目前,人们认为动物中最为理想的生物反应器是“乳房生物反应器”。它的优点是少成本,少环节,少污染。
10、人们模仿生物的某些结构和功能创造各种仪器,这就是仿生。如据蝙蝠发明雷达,据长颈鹿发明宇航服,据乌龟的背甲发明薄壳。
11、真菌同样如此,有的真菌对人类有利,如制作面包要用酵毒菌,酿酒、制作酱油、腐乳都要用到真菌,也有的对人类有害,如脚癣、甲癣是由寄生的真菌引起的,小麦叶锈病、棉花枯萎病等也是真菌引起的。
12、食物的腐败主要是由细菌和真菌引起的。故防腐的主要原理就是杀死细菌或控制细菌的生长和繁殖。据此有许多防腐的具体办法,如高温灭菌、腌制、渗透保存等。
13、雌蕊包括柱头、花柱、子房。雄蕊包括花药、花丝
14、蜕皮是外骨骼,蜕皮是因为外骨骼不能随幼虫身体的生长而长大。
15、昆虫是卵生、有性生殖、体内*。
16、青蛙的生殖和发育:
17、*卵在雌鸟的体内就开始发育。
18、从蛋壳孵化后身体有羽毛能自行觅食的可视为早成鸟(如:小鸡小鸭等)若无羽靠双亲喂食是晚成鸟(如燕子、麻雀)
19、男性主要的生殖器官是睾丸,能产生*分泌雄性激素维持第二特征。
20、遗传:是指亲子间的相似性,变异:是指亲子间和子代个体间的差异。
21、生物的遗传和变异是通过生殖和发育实现的。
22、性状:生物体所表现的的形态结构特征、生理特性和行为方式统称为性状。
23、DNA是主要的遗传物质,呈双螺旋结构。
24、我国婚姻法规定:直系血亲和三代以内的旁系血亲之间禁止结婚。
25、每个正常人的体细胞中都有23对染色体。
26、可遗传的变异由遗传物质的改变而引起的变异,(题中若提到基因、染色体、DNA等的改变均为课遗传变异)
27、生物变异的意义:生物进化和发展的基础,培育动、植物的优良品种。
28、动物进化的顺序是:鱼类→两栖类→爬行类→鸟类→哺乳类。
29、地球上最早出现的脊椎动物是古代的鱼类。
30、生物防治的优点是不污染环境
31、推动生物不断进化的原因是自然选择。
32、法国博物学家拉马克创立了“用进废退学说”。
33、非生物因素(环境因素)有阳光、水、温度、空气、土壤等。
34、植物、动物、微生物都进行呼吸作用产生二氧化碳
35、生物圈是地球表面的全部生物及其生活的领域的总和。
36、生物圈包括大气圈的下层、水圈的大部、土壤岩石圈的表面及活动于三圈之中的生物组成。
37、可再生资源要遵循科学开发、合理利用和可持续发展的原则。(生物、土地、水)
38、变态发育:在由*卵发育成新个体的过程中,幼体与成体的形态结构和生活习性差异很大,这种发育过程称为变态发育。
39、昆虫生殖发育特点:卵生、有性生殖、体内*。
40、植物的有性生殖:一般是指由亲代产生生殖细胞,通过两性生殖细胞的结合,成为*卵,进而发育成新个体的生殖方式。
五年级上册数学知识点 60句菁华六年级上册数学知识点 60句菁华数学七年级知识点 60句菁华七年级下册生物知识点 50句菁华七年级数学下册知识点总结 50句菁华二年级上册数学知识点 50句菁华五年级上册数学知识点 50句菁华八年级上册数学知识点 50句菁华六年级上册数学知识点 50句菁华初中七年级数学知识点 50句菁华数学七年级知识点 50句菁华数学七年级上册知识点 50句菁华语文七年级下册的知识点 50句菁华语文七年级下册知识点 50句菁华七年级下册语文知识点 40句菁华七年级下册生物考试复习知识点 40句菁华七年级下册数学知识点总结 40句菁华七年级下册数学知识点总结归纳 40句菁华三年级上册数学知识点总结 40句菁华二年级下册数学知识点 40句菁华六年级上册数学知识点总结 40句菁华六年级下册数学知识点归纳 40句菁华七年级下册数学概念知识 30句菁华七年级语文下册知识点 30句菁华七年级下册数学第二单元知识点整理归纳 30句菁华七年级上册数学知识点 30句菁华七年级下册语文第三单元的知识点 30句菁华七年级下册地理知识点归纳 30句菁华中考七年级数学知识点 30句菁华
春节新年QQ祝福语 400句菁华经典晚安问候语语录摘录 400句菁华幼儿园毕业家长寄语文案 100句菁华对老公失望的句子 60句菁华微信伤感的句子 60句菁华描写神态的词语 60句菁华经典古代诗句 60句菁华经典环保标语 60句菁华给小朋友的儿童节祝福语 60句菁华aabb式的词语 50句菁华五一节祝福短信 50句菁华优美的晚安问候语短信 50句菁华六月你好朋友圈句子 50句菁华宣扬公司正能量的句子 50句菁华小学摘抄的好词好句 50句菁华感恩遇见感恩老师的句子 50句菁华最好的人生格言 50句菁华母亲节的祝福语简短 50句菁华
给小朋友压岁钱祝福语 50句菁华表达腊八节快乐的祝福语 50句菁华重阳节祝福的句子 50句菁华38妇女节群发祝福语 40句菁华qq炫舞爱情宣言一对 40句菁华三年级下册排比句 40句菁华八字简短个性签名 40句菁华关于告别2020迎接2021抖音句子 40句菁华女儿幼儿园毕业寄语 40句菁华安静温暖的句子说说心情 40句菁华小孩满月祝贺词 40句菁华情人节简洁又浪漫的短信 40句菁华想一个人的心情说说 40句菁华早上吸引朋友圈的句子大全 40句菁华正月初一的祝福语 40句菁华表白母校的简短文案 40句菁华100条感谢老师的话 30句菁华2020年简短的美好的早安祝福语微信汇总 30句菁华