位置 > 首页 > 句子 >

中考数学知识点 60句菁华

日期:2022-12-02 00:00:00

1、直角坐标系中,点A(1,1)在第一象限。

2、函数=4x+1是正比例函数。

3、cs30°=。

4、同圆或等圆的半径相等。

5、长度相等的两条弧是等弧。

6、经过圆心*分弦的直径垂直于弦。

7、直线与圆有唯一公共点时,叫做直线与圆相切。

8、数的分类及概念数系表:

9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

10、整式和分式

11、指数

12、分式的加、减、乘、除、乘方、开方法则

13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

14、总体:考察对象的全体。

15、个体:总体中每一个考察对象。

16、众数:一组数据中,出现次数最多的数据。

17、角(*角、周角、直角、锐角、钝角)

18、互为余角、互为补角及表示方法

19、公理、定理

20、定义(包括内、外角)

21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

22、一般性质(角)

23、定义及一般形式:

24、根的判别式:

25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。

26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

27、一元一次不等式组:

28、应用举例(略)

29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。

30、表示方法:⑴解析法;⑵列表法;⑶图象法。

31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:

32、特殊角的三角函数值:

33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。

34、"等对等"定理及其推论

35、五种位置关系及判定与性质:(重点:相切)

36、圆的内接、外切多边形(三角形、四边形)

37、*分已知弧

38、科学的听课方式

39、求与y轴*行线段的中点:|y1—y2|/2

40、抛物线是轴对称图形。对称轴为直线

41、一次项系数b和二次项系数a共同决定对称轴的位置。

42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。

43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。

44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。

45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

46、5×1.8 就是求 1.5 的 1.8 倍是多少。

47、求近似数的方法一般有三种:(P10)

48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

49、解方程原理:天**衡。

50、所有的方程都是等式,但等式不一定都是方程。

51、*行四边形面积公式推导:剪拼、*移

52、梯形面积公式推导:旋转

53、身份证码: 18 位

54、重心和三角形3个顶点组成的3个三角形面积相等。

55、直角坐标系中,点A(3,0)在y轴上。

56、当x=2时,函数y=的值为1.

57、当x=3时,函数y=的值为1.

58、函数y=-8x是一次函数。

59、tan45= 1.

60、直角三角形的三条高交点在一个顶点上。


中考数学知识点 60句菁华扩展阅读


中考数学知识点 60句菁华(扩展1)

——数学知识点 100句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


中考数学知识点 60句菁华(扩展2)

——中考数学知识点 50句菁华

1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

2、反比例函数的图象在第一、三象限

3、cs30°=。

4、同弧所对的圆周角等于圆心角的一半。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

8、单项式与多项式

9、指数

10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

11、乘法法则:⑴单×单;⑵单×多;⑶多×多。

12、乘法公式:(正、逆用)

13、线段的中点及表示

14、互为余角、互为补角及表示方法

15、分类:

16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法

17、定义:a>b、a

18、一元一次不等式的解、解一元一次不等式

19、对应线段…;2.对应周长…;3.对应面积…。

20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

21、画函数图象:⑴列表;⑵描点;⑶连线。

22、特殊角的三角函数值:

23、依据:①边的关系:

24、俯、仰角:2.方位角、象限角:3.坡度:

25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

26、圆的定义(两种)

27、圆面积公式

28、弧长公式

29、圆柱、圆锥的侧面展开图及相关计算

30、作三角形的外接圆、内切圆

31、作半径

32、科学的听课方式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、规律方法总结:

35、k,b与函数图像所在象限:

36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

37、用待定系数法求二次函数的解析式

38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

39、见直径往往作直径上的'圆周角

40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

45、梯形面积公式推导:旋转

46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

47、重心到三角形3个顶点距离的*方和最小。

48、直角坐标系中,点A(3,0)在y轴上。

49、反比例函数的图象在第一、三象限。

50、cos60+ sin30= 1.


中考数学知识点 60句菁华(扩展3)

——数学知识点 50句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、封闭图形一周的长度,就是它的周长。

3、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、乘方的定义:

7、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

8、数据1,2,3,4,5的中位数是3.

9、整数和分数统称为有理数。

10、人们通常用一条直线上的点表示数,这条直线叫做数轴。

11、个位满10向十位进1。

12、弄清题意,找出未知数,并用X表示;

13、角

14、除法

15、什么是复名数?

16、什么样的数能被3整除?

17、圆的周长总是直径的三倍多一些。

18、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。

19、两直线*行,内错角相等

20、三角形内角和定理 三角形三个内角的和等于180°

21、边边边公理(SSS) 有三边对应相等的两个三角形全等

22、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

23、逆定理 如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称

24、推论 任意多边的外角和等于360°

25、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

26、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,*行线,转比例,两端各自找联系。

27、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

28、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。

29、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

30、解题公式:追及时间=追及路程÷速度差

31、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

32、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

33、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

34、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。

35、忽视零向量致误

36、错位相减求和项处理不当致误

37、数列中的最值错误

38、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

39、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

40、同类项及其合并

41、指数

42、3空间几何体的表面积与体积

43、直线与*面*行的判定定理:*面外一条直线与此*面内的一条直线*行,则该直线与此*面*行。

44、实数

45、三角形内角和定理:

46、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

47、等腰三角形的性质定理

48、矩形判定定理2

49、相交弦定理

50、列方程解应用题的常用公式:


中考数学知识点 60句菁华(扩展4)

——五年级上册数学知识点 60句菁华

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

5、能正确进行乘号的简写,略写;小数乘法的计算法则;

6、构建初步的空间想象力;

7、多边形面积的计算。

8、计算小数加法先把小数点对齐,再把相同数位上的数相加

9、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

10、用计算器来验算

11、有限小数:小数部分的位数是有限的小数,叫做有限小数。

12、构建空间想象力:

13、①含有未知数的等式称为方程。

14、*行四边形面积=底×高字母公式:s=ah

15、分割法;

16、画垂线时用实线画。

17、*行四边形面积=底×高(s*=ah)

18、三角形高=面积×2÷底 h = 2 S ÷ a

19、运算定律和性质:

20、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。

21、(关于“大约)应用题:

22、圆柱的侧面积=底面圆的周长×高:S=ch。

23、圆锥的体积=底面积×高÷3:V=Sh÷3=πrh÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3。

24、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。

25、相邻两个质量单位进率是1000。

26、圆的面积=圆周率×半径×半径:s=πr2。

27、*行四边形的面积=底×高S=ah

28、正方体的表面积=棱长×棱长×6公式:S=6a2

29、镜子内外的左右方向是相反的。

30、公式:长方形:周长=(长+宽)2【长=周长2-宽;宽=周长2-长】 字母公式:C=(a+b)2 面积=长宽 字母公式:S=ab 正方形:周长=边长4 字母公式:C=4a 面积=边长边长 字母公式:S=a *行四边形的面积=底高 字母公式: S=ah 三角形的面积=底高2 【底=面积2高=面积2底】 字母公式: S=ah2 梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2 【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

31、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

32、5×1.8 就是求 1.5 的 1.8 倍是多少。

33、所有的方程都是等式,但等式不一定都是方程。

34、方程的检验过程:方程左边=……

35、身份证码:18位

36、长方形和正方形是特殊的*行四边形。

37、解方程。

38、求一个数的近似数:

39、分母:表示*均分的份数。分子:表示取出的份数。

40、几个数公有的因数叫做这几个数的公因数。其中最大的一个,叫做它们的最大公因数。

41、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数 做分数的分母较简便。

42、分数的意义两种解释:①把单位1*均分成4份,表示这样的3份。 ②把3*均分成4份,表示这样的1份。

43、含有未知数的等式是方程。

44、求方程中未知数的过程,叫做解方程。

45、从0、2、3、7、8中选出四个不同的数字,组成一个有因数2、3、5的四位数,其中最大的是( 8730 ),最小的是( 2370 )。 解:有0,3,7,8和0,2,3,7两种可能

46、1992所有的质因数的和是( 88 )。

47、A、B、C都是非零自然数,且A÷B=C,那么A和B的最小公倍数是( A ),最大公因数是( B ),C是( A )的因数,A是B的(倍 )数。

48、甲数=2×3×5×A,乙数=2×3×7×A。如果甲、乙两数的最大公因数是30,A应该是( 5 );如果甲、乙两数的最小公倍数是630,A应该是( 3 )。

49、自然数A=B-1,A、B都是非零自然数,A和B的最大公因数是( 1 ),最小公倍数( AB )。

50、一个长方体玻璃容器,容器内装有6升水,这时水面高度是15厘米。把一个苹果放入水中,这时容器内水面的高度是16.5厘米。请你求出这个苹果的体积。

51、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

52、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

53、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

54、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

55、有些事件的发生是确定的,有些是不确定的。 可能

56、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)

57、正方形里最大的圆。两者联系:边长=直径

58、长方形里最大的圆。两者联系:宽=直径

59、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

60、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,


中考数学知识点 60句菁华(扩展5)

——数学七年级知识点 60句菁华

1、具有相反意义的量

2、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高线、中线、角*分线的意义和做法

4、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

5、方程的思想。数学是研究事物的空间形式和数量关系的,初中数学最重要的就是等量关系,其次是不等量关系。最常见的等量关系就是方程。

6、列代数式

7、代数式的值

8、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形。

9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

10、正数:大于0的数。

11、连接两点间的线段的长度,叫做这两点的距离。

12、整数:正整数、0、负整数,统称整数。

13、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

14、绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

15、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

16、先定符号,再算绝对值。

17、乘法交换律:ab=ba

18、除以一个不等于0的数,等于乘这个数的倒数。

19、同级运算,从左到右进行。

20、*方根

21、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

22、同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

23、同位角、内错角、同旁内角:

24、真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。

25、垂线的性质:

26、整数和分数统称为有理数(rationalnumber).

27、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolutevalue).

28、垂直三要素:垂直关系,垂直记号,垂足。

29、有理数乘法法则

30、有理数中仍然有:乘积是1的两个数互为倒数.

31、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.

32、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.

33、根据有理数的乘法法则可以得出

34、做有理数混合运算时,应注意以下运算顺序:

35、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。

36、对应周长取值范围

37、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。

38、多项式

39、能够完全重合的两个图形是全等图形。

40、两边及一角对应相等的两个三角形不一定全等。

41、绝对值:

42、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.

43、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。

44、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

45、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

46、有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

47、若Y随X的变化而变化,则X是自变量Y是因变量。

48、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180—2x。

49、两点确定一条直线,两点之间线段最短._______________叫两点间距离.

50、数学活动——动手操作、探索新知

51、0表示的意义

52、理解:只有能化成分数的数才是有理数。

53、注意:

54、相反数的性质与判定

55、绝对值的几何定义

56、绝对值的性质

57、总结梳理,提炼方法。

58、互为倒数:乘积为1的两个数互为倒数;

59、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a/0无意义。

60、判断:1)最小的自然数是1;2)最小的整数是1;3)一个有理数的倒数等于它本身,则这个数是1;


中考数学知识点 60句菁华(扩展6)

——八年级上册数学知识点 50句菁华

1、直角三角形全等的判定

2、角*分线推论:角的内部到角的两边的距离相等的点在叫的*分线上。

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、定理1关于某条直线对称的两个图形是全等形

5、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

6、多边形内角和定理n边形的内角的和等于(n—2)×180°

7、*行四边形性质定理2*行四边形的对边相等

8、*行四边形判定定理2两组对边分别相等的四边形是*行四边形

9、*行四边形判定定理4一组对边*行相等的四边形是*行四边形

10、矩形性质定理1矩形的四个角都是直角

11、菱形性质定理1菱形的四条边都相等

12、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

13、线段垂直*分线上的点与这条线段的两个端点的距离相等

14、等腰三角形的性质

15、运用公式法

16、*方根:一般地,如果一个数x的*方根等于a,即x2=a,那么数x就叫做a的*方根。

17、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

18、比较法

19、公式法

20、定理1 在角的*分线上的点到这个角的两边的距离相等

21、推论 2 有一个角等于60°的等腰三角形是等边三角形

22、由坐标找点:例找点B( 3,-2 ) ?

23、关于坐标轴、原点的对称点:

24、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

25、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫正多边形。

26、要抓好几个提高数学成绩的必要条件。数*算,数学解题(保证数量和质量),准备错题本,准备一本参考书,遇到难题尽量靠自己去解决而不是直接看答案,再保持勤奋和多动笔练习。

27、因式分解

28、轴对称图形上对应线段相等、对应角相等。

29、点(x,y)关于x轴对称的点的坐标为(x,—y)

30、等边三角形的三个内角相等,等于60°,

31、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

32、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

33、同底数幂的除法

34、因式分解的思路与解题步骤:

35、分组分解法:

36、在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。

37、通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.

38、类比分数的通分得到分式的通分:

39、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;

40、把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

41、在*面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

42、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

43、定义不同。2表示方法不同。3、个数不同。4、取值范围不同。

44、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

45、通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。

46、刻画数据的集中趋势(*均水*)的量:*均数、众数、中位数

47、个体:组成总体的每一个考察对象称为个体、

48、对角线相等的*行四边形是矩形。

49、对角线互相垂直的*行四边形是菱形。

50、邻边相等的矩形是正方形。


中考数学知识点 60句菁华(扩展7)

——七年级下册数学知识点总结归纳 40句菁华

1、相反数

2、*方根

3、乘法

4、单项式的数字因数叫做单项式的系数。

5、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

6、几个单项式的和叫做多项式。

7、多项式中不含字母的项叫做常数项。

8、整式不一定是单项式。

9、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

10、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。

11、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。

12、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。

13、积是一个多项式,其项数与多项式的项数相同。

14、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。

15、*方差公式可以逆用,即:a2—b2=(a+b)(a—b)。

16、*行线的性质:两直线*行。(线的*行

17、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求*均值。

18、会判轴对称图形,会根据画对称图形,(或在方格中画)

19、常见的轴对称图形有:

20、垂直三要素:垂直关系,垂直记号,垂足。

21、垂线段最短。

22、命题:判断一件事情的语句叫命题。

23、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。

24、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

25、三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。

26、任意三角形都有三条角*分线,并且它们相交于三角形内一点。(内心)

27、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

28、钝角三角形有两条高在外部。

29、三个角对应相等的两个三角形不一定全等。

30、两边及一角对应相等的两个三角形不一定全等。

31、一条斜边和一直角边对应相等的两个三角形全等。

32、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

33、全等图形

34、两个能够重合的图形称为全等图形。

35、全等三角形

36、若Y随X的变化而变化,则X是自变量Y是因变量。

37、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥*均速度=总路程÷总时间

38、随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小)。

39、利用事物的变化规律进行估计(或者估算)。例如:自变量x每增加一定量,因变量y的变化情况;*均每次(年)的变化情况(*均每次的变化量=(尾数—首数)/次数或相差年数)等等;

40、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;


中考数学知识点 60句菁华(扩展8)

——六年级下册数学知识点归纳 40句菁华

1、常见的圆柱圆锥解决问题:

2、正方形判定定理

3、圆锥解析几何定义:圆锥面和一个截它的*面(满足交线为圆)组成的空间几何图形叫圆锥。

4、生活中的圆锥:生活中经常出现的圆锥有:沙堆、漏斗、帽子。圆锥在日常生活中也是不可或缺的。

5、整十整百数乘一位数

6、比较大小的方法:

7、多位数的写法

8、多位数的大小比较:

9、“万”“亿”作单位的数:

10、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

11、按比例分配:

12、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

13、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

14、判断这两个量的比值是否一定,比值一定就成正比例关系;

15、判断这两个量的积是否一定,积一定就成反比例关系;反之不成反比例关系。(简说:用乘法,积一定,成反比)

16、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

17、以长方形的宽为底面周长,长为高。

18、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

19、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

20、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

21、圆锥的特征:

22、圆锥的相关计算公式:

23、以前所学的所有数(0除外)都是正数,也就是说正数前面的“+”是可以省略不写的!

24、写法:在所写数的前面加上“—” 练习: 零上 16 摄氏度 零下

25、摄氏度

26、(1)圆柱周围的面叫做侧面。

27、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个*行四边形。

28、温馨提示:圆柱的底面是圆形,面不是椭圆。

29、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

30、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

31、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

32、一个圆柱占空间的大小,叫做这个圆柱的体积。

33、圆锥是由一个底面和一个侧面两部分组成。

34、温馨提示:

35、百分数。

36、统计。

37、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

38、两条*行线之间的距离处处相等。

39、在1、3、5、7、……、1999、2001这个数列中,数字“5”一共出现了多少次?

40、统计表制作步骤:

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1