位置 > 首页 > 句子 >

数学知识点 50句菁华

日期:2022-12-02 00:00:00

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、封闭图形一周的长度,就是它的周长。

3、数轴:数轴是规定了原点、正方向、单位长度的一条直线。

4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。

5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。

6、乘方的定义:

7、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。

8、数据1,2,3,4,5的中位数是3.

9、整数和分数统称为有理数。

10、人们通常用一条直线上的点表示数,这条直线叫做数轴。

11、个位满10向十位进1。

12、弄清题意,找出未知数,并用X表示;

13、角

14、除法

15、什么是复名数?

16、什么样的数能被3整除?

17、圆的周长总是直径的三倍多一些。

18、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。

19、两直线*行,内错角相等

20、三角形内角和定理 三角形三个内角的和等于180°

21、边边边公理(SSS) 有三边对应相等的两个三角形全等

22、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线

23、逆定理 如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称

24、推论 任意多边的外角和等于360°

25、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

26、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,*行线,转比例,两端各自找联系。

27、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。

28、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。

29、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

30、解题公式:追及时间=追及路程÷速度差

31、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

32、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

33、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:

34、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。

35、忽视零向量致误

36、错位相减求和项处理不当致误

37、数列中的最值错误

38、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件

39、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

40、同类项及其合并

41、指数

42、3空间几何体的表面积与体积

43、直线与*面*行的判定定理:*面外一条直线与此*面内的一条直线*行,则该直线与此*面*行。

44、实数

45、三角形内角和定理:

46、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等

47、等腰三角形的性质定理

48、矩形判定定理2

49、相交弦定理

50、列方程解应用题的常用公式:


数学知识点 50句菁华扩展阅读


数学知识点 50句菁华(扩展1)

——数学知识点 100句菁华

1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。

2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍

3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。

4、长方形和正方形是特殊的*行四边形。

5、①相同分母的分数相加、减:分母不变,只和分子相加、减。

6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。

7、有理数加法的运算律:

8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。

9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。

10、有理数中仍然有:乘积是1的两个数互为倒数。

11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

12、圆方程

13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。

14、从个位减起;

15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

16、哪一位上乘得的积满几十就向前进几。

17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

20、解方程;

21、除法各部分之间的关系:

22、乘法各部分的关系:

23、什么是名数?

24、什么是复名数?

25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

26、环形面积=大圆–小圆=πR2-πr2

27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。

34、学生在动手操作中,可以画出并能计算出图形的周长。

35、概念和分类

36、基本规律

37、鸡兔同笼的解题思路

38、两直线*行,内错角相等

39、定理 三角形两边的和大于第三边

40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合

41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

42、直角三角形斜边上的中线等于斜边上的一半

43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

44、*行四边形性质定理1 *行四边形的对角相等

45、*行四边形性质定理2 *行四边形的对边相等

46、推论 夹在两条*行线间的*行线段相等

47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形

48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称

49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等

50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比

52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

53、集合的中元素的三个特性:

54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

55、语言描述法:例:{不是直角三角形的三角形}

56、有余数的除法: 被除数=商×除数+余数

57、竖式:

58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。

59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。

60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。

61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;

63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;

64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;

65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。

66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.

67、用字母表示数的写法

68、列方程解答应用题的步骤

69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41

70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,

71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;

72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可

73、怎样找准分数应用题中单位“1”

74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)

75、奇数、偶数、质数、合数(正整数自然数)

76、忽视零向量致误

77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用

78、单项式与多项式

79、指数

80、1柱、锥、台、球的结构特征

81、2空间几何体的三视图和直观图

82、2.直线、*面*行的判定及其性质

83、3直线、*面垂直的判定及其性质

84、3.1直线与*面垂直的判定

85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形

86、有理数和无理数统称实数.

87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.

88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

89、一个数与0相加,仍得这个数。

90、方程与方程组

91、一元二次方程的二次函数的关系

92、同角或等角的余角相等——余角=90-角度。

93、逆定理

94、矩形性质定理1

95、等腰梯形判定定理

96、判定定理3

97、性质定理3

98、圆的外部可以看作是圆心的距离大于半径的点的集合

99、切割线定理

100、扇形面积公式:S扇形=n兀R^2/360=LR/2


数学知识点 50句菁华(扩展2)

——中考数学知识点 50句菁华

1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.

2、反比例函数的图象在第一、三象限

3、cs30°=。

4、同弧所对的圆周角等于圆心角的一半。

5、垂直于半径的直线必为圆的切线。

6、过半径的外端点并且垂直于半径的直线是圆的切线。

7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│

8、单项式与多项式

9、指数

10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤

11、乘法法则:⑴单×单;⑵单×多;⑶多×多。

12、乘法公式:(正、逆用)

13、线段的中点及表示

14、互为余角、互为补角及表示方法

15、分类:

16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法

17、定义:a>b、a

18、一元一次不等式的解、解一元一次不等式

19、对应线段…;2.对应周长…;3.对应面积…。

20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。

21、画函数图象:⑴列表;⑵描点;⑶连线。

22、特殊角的三角函数值:

23、依据:①边的关系:

24、俯、仰角:2.方位角、象限角:3.坡度:

25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。

26、圆的定义(两种)

27、圆面积公式

28、弧长公式

29、圆柱、圆锥的侧面展开图及相关计算

30、作三角形的外接圆、内切圆

31、作半径

32、科学的听课方式

33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

34、规律方法总结:

35、k,b与函数图像所在象限:

36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。

37、用待定系数法求二次函数的解析式

38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

39、见直径往往作直径上的'圆周角

40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。

41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。

42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.

43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

45、梯形面积公式推导:旋转

46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

47、重心到三角形3个顶点距离的*方和最小。

48、直角坐标系中,点A(3,0)在y轴上。

49、反比例函数的图象在第一、三象限。

50、cos60+ sin30= 1.


数学知识点 50句菁华(扩展3)

——小学数学知识点 50句菁华

1、加减混合运算:

2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,如70比25多多少?19比46少多少?

3、多几的问题。未知数比谁多几,就用谁加上几。如:比29多17的数是多少?(29+17=46)

4、哪一位数不够减,从前位退1,在本位加10再减。

5、从个位起,用一位数依次乘多位数中的每一位数;

6、除数除到哪一位,就把商写在那一位上面;

7、然后把两次乘得的数加起来。

8、除到被除数的哪一位就在哪一位上面写商;

9、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

10、从高位起,一级一级往下读;

11、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

12、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

13、弄清题意,找出未知数,并用X表示;

14、分数加减法:

15、分数的意义:把一个整体*均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

16、四边形的特点:有四条直的边,有四个角。

17、2×7=14读作:2乘7等于14;3乘4等于12写作:3×4=12。

18、乘法算式中,两个乘数(因数)交换位置,积不变。如:8×4=4×8

19、5个6相加写作乘法算式是( )或( )。

20、数字写在字母的前面,应省略乘。[5a]、[16xy]等。

21、若系数是带分数,要化成假分数。

22、比较两个图形面积的大小,要用统一的面积单位来测量。

23、边长1分米的正方形面积是1*方分米。

24、边长1米的正方形面积是1*方米。

25、边长100米的正方形面积是1公顷(10000*方米)。

26、测量土地的面积时,常常要用到更大的面积单位:公顷、*方千米。

27、长方形的面积=长×宽 长 = 面积÷宽 宽 = 面积 ÷长

28、汽车在笔直的公路上行驶,车身的运动是( )现象

29、教室门的打开和关闭,门的运动是( )现象。

30、下面( )的运动是*移。

31、可以分布计算,也可以列综合算式。

32、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)

33、练习十三 第4题 (重点)

34、有余数的除法的意义:在*均分一些物体时,有时会有剩余。

35、笔算除法的计算方法:

36、22个学生去划船,每条船最多坐4人,他们至少要租多少条船?

37、10个一千是一万。

38、估算

39、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

40、利率

41、因数×因数=积积÷一个因数=另一个因数

42、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

43、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。

44、退位减:减法运算中必须向高位借位的减法运算。例:51-22=39

45、数级分类:

46、数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

47、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

48、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

49、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

50、描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。


数学知识点 50句菁华(扩展4)

——六年级上册数学知识点总结 40句菁华

1、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

2、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

3、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。

4、圆周率实验:

5、区分周长的一半和半圆的周长:

6、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2。6÷1。3表示已知两个因数的积2。6与其中的一个因数1。3,求另一个因数的运算。

7、取近似数的方法:

8、无限小数:小数部分的位数是无限的小数,叫做无限小数。

9、乘积是1的两个数互为倒数 1的倒数是1 0没有倒数

10、圆的周长与它的直径的比值叫做圆周率,用兀来表示,兀≈3.14

11、用x 和 y表示两种相关联的量,用k表示它们的比值(一定),那么正比例关系表示为:

12、自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。

13、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

14、一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,的因数是10。

15、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

16、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

17、公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

18、如果较小数是较大数的因数,那么较小数就是这两个数的公因数。

19、几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。

20、分数的意义 :把单位“1”*均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”*均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

21、把单位“1”*均分成若干份,表示其中的一份的数,叫做分数单位。

22、分数的分类

23、分子分母是互质数的分数叫做最简分数。

24、小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

25、圆的面积=圆周率×半径×半径

26、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。

27、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。

28、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。

29、分数除法:分数除法是分数乘法的逆运算。

30、你还能得到哪些信息?

31、文化教育支出了多少元?购买衣物支出了多少元?

32、因为零不能作除数,所以分数的分母不能为零。

33、被除数 相当于分子,除数相当于分母。

34、整数加法计算法则:

35、同分母分数加减法计算方法:

36、带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。

37、用字母表示数的意义和作用

38、、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

39、、长方体

40、圆锥体


数学知识点 50句菁华(扩展5)

——数学圆知识点总结 40句菁华

1、圆是定点的距离等于定长的点的集合

2、圆的内部可以看作是圆心的距离小于半径的点的集合

3、同圆或等圆的半径相等

4、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

5、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线

6、推论:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形

7、推论:经过切点且垂直于切线的直线必经过圆心

8、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等

9、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

10、圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。

11、1=3.14 2=6.28 3=9.42 4=12.56 5=15.7 6=18.84

12、11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256

13、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

14、圆的有关性质

15、不在同一直线上的三点确定一个圆。

16、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

17、切线的性质定理圆的切线垂直于经过切点的半径

18、推论2经过切点且垂直于切线的直线必经过圆心

19、圆的外切四边形的两组对边的和相等外角等于内对角

20、正n边形的每个内角都等于n-2×180°/n

21、正三角形面积√3a/4 a表示边长

22、内公切线长= d-R-r外公切线长= d-R+r

23、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

24、推论2半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径

25、弧长公式l=ar a是圆心角的弧度数r >0扇形面积公式s=1/2lr

26、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直*分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角*分线的交点,到三角形3边距离相等。

27、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

28、圆的周长C=2d

29、圆锥侧面积S=rl

30、圆的标准方程

31、圆的一般方程

32、如果B=0即直线为Ax+C=0,即x=-C/A,它*行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1

33、圆的周长C=2πr=πd

34、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等

35、①直线L和⊙O相交 d

36、推论2 经过切点且垂直于切线的直线必经过圆心

37、圆的外切四边形的两组对边的和相等 外角等于内对角

38、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

39、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

40、弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r


数学知识点 50句菁华(扩展6)

——数学分析知识点总结 40句菁华

1、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系

2、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用

3、角

4、内错角相等,两直线*行

5、两直线*行,内错角相等

6、推论

7、圆是定点的距离等于定长的点的集合

8、圆是以圆心为对称中心的中心对称图形

9、*面向量:初等运算、坐标运算、数量积及其应用

10、复数:复数的概念与运算

11、数列的通项公式

12、有理数:①整数→正整数,0,负整数;

13、同角或等角的补角相等

14、过一点有且只有一条直线和已知直线垂直

15、边边边公理(SSS):有三边对应相等的两个三角形全等

16、斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

17、角的*分线是到角的两边距离相等的所有点的集合

18、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合

19、*行四边形判定定理3

20、矩形判定定理2

21、菱形性质定理1

22、菱形性质定理2

23、菱形判定定理2

24、等腰梯形性质定理

25、等腰梯形的两条对角线相等

26、对角线相等的梯形是等腰梯形

27、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d

28、*行于三角形的一边,并且和其他两边相交的直线,

29、相似三角形判定定理1

30、判定定理2

31、性质定理3

32、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

33、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

34、到已知角的两边距离相等的点的轨迹,是这个角的*分线

35、切线的判定定理

36、弦切角定理

37、①两圆外离

38、元素的确定性;

39、集合的表示方法:列举法与描述法。

40、有限集含有有限个元素的集合

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1