位置 > 首页 > 句子 >

二年级上册数学知识点 50句菁华

日期:2022-12-02 00:00:00

1、面对傍晚的太阳,你的前面是(西),后面是(东),左面是(南),右面是(北)。

2、想好先解决什么问题,再解决什么问题。

3、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

4、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。

5、估算

6、“混合运算”(乘加、乘减、除加、除减、加减混合以及两步有括号式题)的复习。

7、“万以内数的认识”的复习。

8、“万以内的加、减法”的复习。

9、“解决问题”的复习。

10、一定是直角三角形吗

11、*方根

12、实数

13、求解二元一次方程组

14、用二元一次方程组确定一次函数表达式

15、因式分解时,各项如果有公因式应先提公因式,再进一步分解。

16、将原多项式分解成(x+q)(x+p)的形式。

17、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

18、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

19、连加、连减

20、加减混合

21、关于提问题的题目,可以这样提问:

22、6的乘法口诀

23、在具体情境中,进一步体会加法的意义。

24、探索并掌握两位数加两位数进位加的计算方法,能正确进行计算。

25、不退位减法

26、进一步培养提出问题、解决问题的意识和能力。

27、在具体情境中,理解"比某数多几或少几"的实际问题。

28、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

29、加、减法估算

30、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

31、圆面积公式的推导:

32、厘米和米

33、笔算减法

34、排列与顺序有关,组合与顺序无关。

35、探索并掌握两位数加两位数不时位加法的计算方法,初步掌握笔算加法的法则,能熟练的计算;

36、学生在具体活动中用不同的物品作计量单位去测量同一长度,来经历统一长度单位的必要性;

37、学生初步认识角,知道角的各部分名称,初步学会用尺画角;初步学会用尺画角;

38、长度单位:长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。

39、进位:加法运算中,每一数位上的数等于基数时向前一位数进一。

40、在统计图中,如果一格表示数量2,那么半格就表示数量1。

41、在一个大于1的数a和它2倍之间,即区间(a,2a)中必存在至少一个素数。

42、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)

43、长度单位:是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。其国际单位是“米”(符号“m”),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。

44、单位1-----一个物体或者几个物体

45、分子相同,分母小的分数大。分母相同,分子大的分数大。

46、角:像红领巾、三角板、钟面、等实物上都有大大小小不同的角。

47、长方形的周长=(长+宽)×2:C=(a+b)×2。

48、圆柱的表面积=上下底面面积+侧面积:

49、米和厘米的关系:1米=100厘米100厘米=1米

50、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。


二年级上册数学知识点 50句菁华扩展阅读


二年级上册数学知识点 50句菁华(扩展1)

——五年级上册数学知识点 50句菁华

1、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

2、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

3、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

4、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

6、把因数的位置交换相乘

7、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。

8、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。

9、用字母表示计算公式。

10、综合计算法

11、*行四边形面积=底×高 S = a h

12、*行四边形底=面积÷高 a = S ÷ h

13、梯形高=梯形面积×2÷(上底+下底) h = 2 S ÷( a + b )

14、1*方米=100*方分米=10000*方厘米

15、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

16、求近似数的方法一般有三种:(P10)

17、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

18、三位数乘一位数:积有可能是三位数,也有可能是四位数。

19、长方形的周长=(长+宽)×2:C=(a+b)×2。

20、长方形的面积=长×宽:S=ab。

21、三角形的面积=底×高÷2 S=ah÷2

22、长方体的体积=长×宽×高公式:V = abh

23、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。

24、5×1.8 就是求 1.5 的 1.8 倍是多少。

25、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。

26、方程的检验过程:方程左边=……

27、等底等高的*行四边形面积相等;

28、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

29、正方形的特点:有4个直角,4条边相等。

30、*行四边形的特点:

31、可以表示起点

32、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数

33、读数和写数(读数时写汉字写数时写*数字)

34、公式

35、真分数:分子小于分母的分数叫做真分数。真分数小于1。

36、互质:两个数的公因数只有1,这两个数叫做互质。 互质的规律: (1) 相邻的自然数互质; (2) 相邻的奇数都是互质数; (3) 1和任何数互质; (4) 两个不同的质数互质 (5) 2和任何奇数互质。 质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间最大的公因数是1,如8和9.

37、自然数按是否是2的倍数来分:奇数偶数

38、自然数按因数的个数来分:质数、合数、1.

39、表示相等关系的式子叫做等式。

40、含有未知数的等式是方程。

41、列方程解应用题的思路:

42、1992所有的质因数的和是( 88 )。

43、写出长方体的侧面积计算公式:长方体的侧面积=( )×( )。

44、一个分数的分子缩小到原来的 ,分母缩小到原来的 ,分数的值就( 扩大到原来的3倍 )。

45、某厂男职工人数是女职工的 ,女职工比男职工多30人,男职工有( )人。

46、圆是轴对称图形,有无数条对称轴,对称轴就是直径。

47、长方形里最大的圆。两者联系:宽=直径

48、车轮滚动一周前进的路程就是车轮的周长。

49、1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34

50、常用的*方数:112=121 122=144 132=169 142=196 152=225


二年级上册数学知识点 50句菁华(扩展2)

——六年级上册数学知识点 50句菁华

1、整数加法计算法则:

2、小数乘法法则:

3、小数乘法意义:

4、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

5、已知A比B多(或少)几分之几,求A的解题方法

6、物*置的相对性

7、理解比例的意义和基本性质,会解比例。

8、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2:1.5。

9、在*面图上标出物*置的方法:

10、绘制路线图的方法:

11、圆周率表示同一圆内(__)和(__)的倍数关系,它用字母(__)表示,保留两位小数取近似值是(__)。

12、在同一个圆内可以画(__)条直径;如果用圆规画一个直径是10厘米的圆,圆规的两脚间的距离应该是(__)厘米。

13、圆的直径扩大4倍,圆的面积也扩大4倍。(__)

14、一捆电线绕了9圈,每圈直径都是48厘米,这捆电线长多少米?(圆的周长就是绕一圆的长度,有9圈)

15、在圆内画一个最大的正方形这个最大的正方形的面积=直径×半径

16、小数化百分数时,把小数点向(右)移动(两)位,后面添上百分号;分数化成百分数,可以先化成小数,再化成百分数。

17、求一个数比另一个数多(或少)几分之几(或百分之几)?

18、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

19、根据比的基本性质,可以把比化成最简单的整数比。

20、被减数-减数=差被减数-差=减数差+减数=被减数

21、百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

22、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

23、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

24、假分数与带分数的互化:

25、异分母分数加、减法:异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算;或者先根据需要进行部分通分。根据算式特点来选择方法。

26、百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。

27、已知一个数的百分之几是多少,求这个数?

28、浓度问题

29、折扣:商品的现价是原价的百分之几。几折就是十分之几也就是百分之几十。

30、用x 和 y表示两种相关联的量,用k表示它们的乘积(一定),那么反比例关系表示为:

31、一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、…其中最小的倍数是3 ,没有的倍数。

32、约分:把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

33、约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

34、被除数 相当于分子,除数相当于分母。

35、减法的性质:

36、分数除法应用题:

37、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

38、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

39、根据比的基本性质,可以把比化成最简单的整数比。

40、按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

41、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。

42、常用统计图的优点:

43、使学生能在方格纸上用数对确定位置;

44、使学生理解倒数的意义,掌握求倒数的方法;

45、整数的倒数:找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

46、分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。

47、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

48、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。

49、百分数的由来:200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,就是一种新的数,我们把它叫做分数。而后,人们在分数的基础上又以100做基数,发明了百分数。

50、“数与形相结合”的思想


二年级上册数学知识点 50句菁华(扩展3)

——二年级下册数学知识点 40句菁华

1、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

2、地图上的方向口诀:上北下南,左西右东;

3、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

4、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

5、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

6、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

7、正方形有四个直角,四条边都相等;

8、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

9、读数和写数都从高位起。万以内数的读法:读数时,要从高位读起,万位上是几就读几万,千位上是几就读几千,百位上是几就读几百,十位上是几就读几十,个位上是几就读几,中间有一个“0”或者连续两个“0”就只读一个“零”,末尾不管有几个 0都不读。

10、万以内数的写法:写数时,也要从高位写起,几个千就在千位上写几,几个百就在百位上写几,几个十就在十位上写几,几个一就在个位上写几,哪一位上一个数字也没有就写“0”占位。

11、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。例:2647=( )+( )+( )+( )

12、近似数:与准确数很接近的整十、整百、整千的数。

13、除法算式的读法:通常按照从前往后顺序读,读作除以,=读作等于,其他读法不变。

14、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。

15、表内除法的知识点:

16、被除数

17、完全商

18、旋转:在*面内,把一个图形绕点O旋转一个角度的图形变换叫做旋转,点O叫做旋转中心,旋转的角叫做旋转角,如果图形上的点P经过旋转变为点Pˊ,那么这两个点叫做这个旋转的对应点。

19、三角形的内角和定理,及三角形外角定理。

20、两边之和大于第三边,两边之差小于第三边。

21、大角对大边。

22、认识角

23、认识直角、锐角、钝角

24、认识钟面:(1)钟面上最短最粗的针是时针,较短较粗的是分针,最细最长的是秒针。

25、认识几时几分方法:时针指在两个数之间,算小数,时针指在12和1之间,算12时,分针指着几,表示几个5分钟。

26、认识大约几时方法:时针接近几就是几时。此时,分针一般指在数字12左右。

27、比较时间:单位不同时要化成相同的时间单位再进行比较。在进行比赛(或做事)时:同样的距离(或同样的事情)所用的时间越多说明速度越慢(或效率越低);所用的时间越少说明速度越快(或效率越高)。

28、学生情况分析:

29、情感与态度目标

30、3/1分子分母同时乘以2,得到6/2,这就是整数3的一个分数形式。

31、3/1分子分母同时乘以4,得到12/4,这也是整数3的一个分数形式。

32、数轴的前点(原点)

33、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1+5)(*,1968年)

34、正方形的周长=边长×4:C=4a。

35、正方形的面积=边长×边长:S=a.a=a。

36、*行四边形的面积=底×高:S=ah。

37、正方体的表面积=棱长×棱长×6:S=6a×a。

38、205. 207. ( ). ( ). ( )

39、整千整百数的加减法:

40、因为13?+23?=1所以13和23互为倒数。()


二年级上册数学知识点 50句菁华(扩展4)

——八年级上册物理知识点 50句菁华

1、减弱噪声的方法:在声源处减弱、在传播过程中减弱、在人耳处减弱。

2、误差:测量值和真实值之间的差别叫误差。误差产生的原因:①与测量的人有关;②与测量的工具有关。任何测量结果都有误差,误差只能尽量减小,不能绝对避免;但错误是可以避免的。

3、回声:声音在传播途径中遇到碍物被返射回去的现象,叫回声。如回声比原声到达人耳晚0。1s以上,人耳能把他们区分开,否则回声会与原声混在一起会加强原声。利用“双耳效应”可以听到立体声。

4、自身能够发光的物体叫光源,如太阳、萤火虫等,而月亮不是光源。

5、在声音传给大脑的过程中任何部位发生障碍,人都会失去听觉(鼓膜、听小骨处出现障碍是传导性耳聋;听觉神经处出障碍是神经性耳聋)。

6、音调:声音的高低叫音调,频率越高,音调越高(频率:物体在每秒内振动的次数,表示物体振动的快慢,单位是赫兹,振动物体越大音调越低;)。

7、运动的描述

8、速度(常考点)

9、骨传导:声音的传导不仅仅可以用耳朵,还可以经头骨、颌骨传到听觉神经,引起听觉。这种声音的传导方式叫做骨传导。一些失去听力的人可以用这种方法听到声音。

10、人们用分贝(dB)来划分声音等级;听觉下限0dB;为保护听力应控制噪声不超过90dB;为保证工作学习,应控制噪声不超过70dB;为保证休息和睡眠应控制噪声不超过50dB。

11、汽化和液化:

12、光线是由一小束光抽象而建立的理想物理模型,建立理想物理模型是研究物理的常用方法之一。

13、反射定律:三线同面,法线居中,两角相等,光路可逆.即:反射光线与入射光线、法线在同一*面上,反射光线和入射光线分居于法线的两侧,反射角等于入射角。光的反射过程中光路是可逆的。

14、近视及远视的矫正:近视眼要戴凹透镜,远视眼要戴凸透镜.

15、测量:

16、凸透镜:中间厚边缘薄的透镜是凸透镜。凹透镜:中间薄边缘厚的透镜是凹透镜。

17、凹透镜的作用:对光线发散。

18、照相机的结构:

19、投影器与幻灯机的区别:投影器用两块大塑料螺纹透镜作聚光镜,并用一块*面镜把像反射到屏幕上。

20、色光三原色:红、绿、蓝。颜料三原色:红、黄、蓝。

21、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,整个原子呈中性。

22、匀速直线运动:我们把物体沿着直线且速度不变的运动叫匀速直线运动。

23、比较物体运动快慢的方法:

24、测量原理:*均速度计算公式v=ts。

25、回声:

26、人耳听觉范围:

27、音色:

28、温度计制作原理:

29、凝固条件:

30、凝华现象:

31、吸热与放热:

32、光的直线传播:

33、光线:

34、判断日食:

35、反射的分类:

36、色散:

37、紫外线的应用:

38、凹透镜:

39、凹透镜对光线的作用:

40、光心:

41、投影仪成像特点:倒立放大的实像。

42、密度与温度:温度能改变物质的密度,一般物体都是在温度升高时体积膨胀(即:热胀冷缩,水在4℃以下是热缩冷胀),密度变小。

43、凸透镜有两个实焦点,焦点到光心距离叫做焦距。凹透镜有两个虚焦点。

44、照相机的镜头是个凸透镜,调焦环的作用是调节镜头到胶片的距离,拍近景时,镜头往前伸,

45、望远镜的目镜和物镜都是凸透镜,目镜相当于放大镜,物镜相当于照相机镜头。显微镜的目镜和物镜也是凸透镜,目镜相当于放大镜,物镜相当于投影仪镜头。

46、物质从液态变成气态叫做汽化,从气态变成液态叫做液化。汽化吸热,液化放热。汽化分为蒸发和沸腾。蒸发现象:在任何温度下,发生在液体表面,缓慢的汽化现象。影响蒸发的因素:

47、折射角随入射角的增大而增大

48、当光射到两介质的分界面时,反射、折射同时发生

49、生活中与光的折射有关的例子:水中的鱼的位置看起来比实际位置高一些(鱼实际在看到位置的后下方);由于光的折射,池水看起来比实际的浅一些;水中的人看岸上的景物的位置比实际位置高些;夏天看到天上的星斗的位置比星斗实际位置高些;透过厚玻璃看钢笔,笔杆好像错位了;斜放在水中的筷子好像向上弯折了;(要求会作光路图)

50、因果(条件记忆法):如判定使用左、右手定则的条件时,可根据由于在磁场中有电流,而产生力,就用左手定则;若是电力在磁场中运动,而产生电流,就用右手定则。


二年级上册数学知识点 50句菁华(扩展5)

——数学七年级知识点 50句菁华

1、三角形的分类

2、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、线段的性质(公理):所有连接两点的线中,线段最短。

4、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

5、(1)凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p

6、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。

7、*行公理:经过直线外一点,有且只有一条直线与这条直线*行。

8、负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

9、同级运算,从左到右进行。

10、*方根

11、算术*方根

12、单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

13、邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

14、对顶角和邻补角的关系

15、垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。

16、垂线性质

17、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变

18、对应点:*移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

19、特殊解法:换元法。

20、垂直三要素:垂直关系,垂直记号,垂足。

21、有理数乘法法则

22、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。

23、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。

24、判断三条线段能否组成三角形。

25、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。

26、三个角对应相等的两个三角形不一定全等。

27、两边及它们的夹角对应相等的两个三角形全等。

28、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。

29、绝对值:

30、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.

31、全等三角形

32、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。

33、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.

34、、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

35、利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;

36、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。

37、数学80%的分数来源于基础知识,20%的分数属于难点,所以考120分并不难。

38、数学最主要的就是解题过程,懂得数学思维很关键,思路通了,数学自然就会了。

39、常量与变量:在某一变化过程中,可以取不同数值的量叫做变量;在某一变化过程中保持数值不变的量叫做常量、

40、*行线的性质:两直线*行,_________相等,________相等,________互补.

41、*行线的判定:________相等,或______相等,或______互补,两直线*行.

42、0表示的意义

43、数轴上特殊的最大(小)数

44、数轴上点的移动规律

45、多重符号的化简

46、有理数的乘法法则

47、先乘方,再乘除,最后加减;

48、巩固基础知识

49、互为倒数:乘积为1的两个数互为倒数;

50、混合运算法则:先乘方,后乘除,最后加减。


二年级上册数学知识点 50句菁华(扩展6)

——三年级上册数学的知识点归纳 40句菁华

1、计算一段时间,可以用结束的时刻减去开始的时刻。

2、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

3、常用长度单位:米、分米、厘米、毫米、千米。

4、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。

5、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

6、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。

7、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。

8、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。

9、A项 B项

10、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

11、把一个整体*均分得的份数越多,它的每一份所表示的数就越小。

12、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

13、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

14、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

15、在计算长度时,只有相同的长度单位才能相加减。

16、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

17、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

18、读数和写数(读数时写汉字写数时写*数字)

19、数的大小比较:

20、被减数是三位数的连续退位减法的运算步骤:

21、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍

22、正方形的特点:有4个直角,4条边相等。

23、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)

24、减法的验算方法:

25、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”*均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

26、分母越大,分数单位越小,的分数单位是1/2

27、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

28、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

29、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

30、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

31、分数大小比较的应用题:工作效率大的快,工作时间小的快。

32、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

33、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

34、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

35、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

36、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

37、笔算除法顺序:确定商的位数,试商,检查,验算。

38、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

39、*年:2月有28天的月份是*年,*年有365天。

40、闰年:2月有29天的月份是*年,*年有365天。


二年级上册数学知识点 50句菁华(扩展7)

——数学五年级知识点 40句菁华

1、分数:把单位“1”*均分成若干份,表示这样的一份或几份的数,叫做分数。

2、带分数化成假分数:用带分数的整数部分乘分母加分子做分子,分母不变。

3、互质:两个数的公因数只有1,这两个数叫做互质。互质的规律:(1)相邻的自然数互质;(2)相邻的奇数都是互质数;(3)1和任何数互质;(4)两个不同的质数互质(5)2和任何奇数互质。质数与互质的区别:质数是就一个数而言,而互质是指两个或两个以上的数之间的关系;这些数本身不一定是质数,但它们之间的公因数是1,如8和9。

4、分子分母互质的分数叫最简分数,或者说分子分母的公因数只有的1的分数是最简分数。

5、通分:把异分母分数分别化成同分母分数,叫通分。通常用最小公倍数做分数的分母较简便。

6、会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

7、205≈2.2 (保留一位小数)

8、205≈2.21 (保留两位小数)

9、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体*均分成若干份,这样的一份或几份都可以用分数来表示。

10、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

11、分数和小数的互化

12、3=3/10 0.03=3/100 0.003=3/1000

13、方程的意义

14、列方程解应用题的一般步骤

15、一本书100页,*均每页有a行,每行有b个字,那么,这本书一共有( )个字。

16、根据运算定律写出:

17、实验小学六年级学生订阅《希望报》186份,比五年级少订a份。186+a表示( )

18、一块长方形试验田有4.2公顷,它的长是420米,它的宽是( )米。

19、有三个连续自然数,如果中间一个是a,那么另外两个分别是a+1和a-1。( )

20、某校六年级有两个班,上学期级数学*均成绩是85分。已知六(1)班40人,*均成绩为87.1分;六(2)班有42人,*均成绩是多少分?

21、15匹马9天喂了175.5千克饲料,每匹马一天要多少千克饲料?

22、乘法交换律:axb=bxa

23、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

24、计量很短的时间,常用秒。秒是比分更小的时间单位。

25、动手操作,思维拓展

26、计算小数乘法末尾对齐,按整数乘法法则进行计算。

27、小数乘整数中有一个因数是小数,所以积一般来说也是小数。

28、长方形的周长=(长+宽)×2 C=(a+b)×2

29、长方形的面积=长×宽S=ab

30、正方形的面积=边长×边长S=a.a= a

31、直径=半径×2 d=2r半径=直径÷2 r= d÷2

32、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

33、长方体的体积=长×宽×高公式:V = abh

34、对*移和旋转现象的初步认识:

35、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

36、分数化成小数的方法:

37、异分母分数要先通分才能够相加、减。

38、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。

39、梯形面积公式推导:

40、被减数-减数=差被减数-差=减数差+减数=被减数

相关内容
相关词条
热门标签
全站热门
当前热门
标签索引

精美图文推荐

上一篇 下一篇
返回首页


文案 | 句子 | 文案 | 成语 | 文案| 句子| 教学反思 | 教学设计 | 合同范本 | 工作报告 | 活动策划粤icp备20047785号-1