日期:2022-12-02 00:00:00
1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、求一个数的几倍是多少用乘法:这个数×倍数=这个数的几倍
3、长方形的特点:长方形有两条长,两条宽,四个直角,对边相等。
4、长方形和正方形是特殊的*行四边形。
5、①相同分母的分数相加、减:分母不变,只和分子相加、减。
6、大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位置上)。
7、有理数加法的运算律:
8、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
9、圆的两条弦1)在圆外相交时,所夹角等于它所对的两条弧度数差的一半。2)在圆内相交时,所夹的角等于它所夹两条弧度数和的一半。
10、有理数中仍然有:乘积是1的两个数互为倒数。
11、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
12、圆方程
13、*面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分。
14、从个位减起;
15、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
16、哪一位上乘得的积满几十就向前进几。
17、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
18、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
19、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
20、解方程;
21、除法各部分之间的关系:
22、乘法各部分的关系:
23、什么是名数?
24、什么是复名数?
25、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
26、环形面积=大圆–小圆=πR2-πr2
27、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
28、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
29、不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34,6能够减去2,所以不用向高位5借位。
30、在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。
31、认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;
32、数级:数级是为便于人们记读*数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。
33、为学生创设具体的数学情境,通过描一描树叶的边线,摸一摸课桌数学书的边线,再量一量自己的腰围和头围,从而知道了一个图形一周的长度就是这个图形的周长。
34、学生在动手操作中,可以画出并能计算出图形的周长。
35、概念和分类
36、基本规律
37、鸡兔同笼的解题思路
38、两直线*行,内错角相等
39、定理 三角形两边的和大于第三边
40、等腰三角形的顶角*分线、底边上的中线和底边上的高互相重合
41、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
42、直角三角形斜边上的中线等于斜边上的一半
43、线段的垂直*分线可看作和线段两端点距离相等的所有点的集合
44、*行四边形性质定理1 *行四边形的对角相等
45、*行四边形性质定理2 *行四边形的对边相等
46、推论 夹在两条*行线间的*行线段相等
47、*行四边形判定定理2 两组对边分别相等的四边 形是*行四边形
48、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称
49、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
50、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
51、性质定理1 相似三角形对应高的比,对应中线的比与对应角*分线的比都等于相似比
52、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
53、集合的中元素的三个特性:
54、描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
55、语言描述法:例:{不是直角三角形的三角形}
56、有余数的除法: 被除数=商×除数+余数
57、竖式:
58、*行某轴的直线:*行某轴的直线,点的坐标有讲究,直线*行X轴,纵坐标相等横不同;直线*行于Y轴,点的横坐标仍照旧。
59、特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀123,321,三九二十七既可。
60、*行四边形的判定:要证*行四边形,两个条件才能行,一证对边都相等,或证对边都*行,一组对边也可以,必须相等且*行。对角线,是个宝,互相*分跑不了,对角相等也有用,两组对角才能成。
61、循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.
62、特征:①两个运动的物体一般同时不同地(或不同时不同地)出发作相向运动;
63、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
64、同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;
65、根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。
66、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
67、用字母表示数的写法
68、列方程解答应用题的步骤
69、先把含有未知数x的项看作一个数,然后再解.如3x+20=41
70、按四则运算顺序先计算,使方程变形,然后再解.如2.5×4-x=4.2,
71、对于函数f(x),如果对于定义域内任意一个x,都有f(-x)=f(x),那么f(x)为偶函数;
72、定义法:判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
73、怎样找准分数应用题中单位“1”
74、凑十歌:一凑九,二凑八,三凑七来四凑六,五五相凑就满十。(注:凑十的两个数互为补数)
75、奇数、偶数、质数、合数(正整数自然数)
76、忽视零向量致误
77、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
78、单项式与多项式
79、指数
80、1柱、锥、台、球的结构特征
81、2空间几何体的三视图和直观图
82、2.直线、*面*行的判定及其性质
83、3直线、*面垂直的判定及其性质
84、3.1直线与*面垂直的判定
85、二面角的概念:表示从空间一直线出发的两个半*面所组成的图形
86、有理数和无理数统称实数.
87、数轴上的点与实数一一对应.*面直角坐标系中与有序实数对之间也是一一对应的.
88、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
89、一个数与0相加,仍得这个数。
90、方程与方程组
91、一元二次方程的二次函数的关系
92、同角或等角的余角相等——余角=90-角度。
93、逆定理
94、矩形性质定理1
95、等腰梯形判定定理
96、判定定理3
97、性质定理3
98、圆的外部可以看作是圆心的距离大于半径的点的集合
99、切割线定理
100、扇形面积公式:S扇形=n兀R^2/360=LR/2
数学知识点 100句菁华扩展阅读
数学知识点 100句菁华(扩展1)
——初中数学知识点总结 100句菁华
1、整式与分式
2、解一元二次方程的步骤:
3、韦达定理
4、如果两条直线都和第三条直线*行,这两条直线也互相*行
5、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
6、定理2
7、直角三角形斜边上的中线等于斜边上的一半
8、勾股定理
9、勾股定理的逆定理
10、四边形的外角和等于360°
11、*行四边形判定定理1
12、*行四边形判定定理3
13、矩形判定定理2
14、菱形面积=对角线乘积的一半,即S=(a×b)÷2
15、正方形性质定理1
16、三角形中位线定理
17、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
18、混合运算法则:先乘方,后乘除,最后加减。
19、性质定理1
20、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
21、性质定理3
22、有理数比较大小:正数大于0,负数小于0,正数大于负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
23、圆是定点的距离等于定长的点的集合
24、圆的外部可以看作是圆心的距离大于半径的点的集合
25、同圆或等圆的半径相等
26、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
27、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直*分线
28、添括号法则
29、垂径定理
30、圆是以圆心为对称中心的中心对称图形
31、解一元一次方程的一般步骤:
32、普查与抽样调查
33、切割线定理
34、有关数轴
35、在把有理数加减混合运算统一为最简的形式,负数前面的加号可以省略不写.
36、倒数:乘积为1的两个数互为倒数,0没有倒数。
37、内公切线长=d-(R-r)
38、三角形的分类
39、角*分线:三角形的一个内角的*分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角*分线。
40、三角形内角和定理:三角形三个内角的和等于180°
41、对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
42、判定:
43、性质:矩形的四个角都是直角,矩形的对角线相等
44、s菱=争6(n、6分别为对角线长)
45、定义:一组对边*行,另一组对边不*行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
46、2整式的加减
47、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
48、正多边形:在*面内,各个角都相等,各条边都相等的多边形叫做正多边形。
49、*面镶嵌:用一些不重叠摆放的多边形把*面的一部分完全覆盖,叫做用多边形覆盖*面。
50、多边形对角线的条数:
51、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
52、定理:相交两圆的连心线垂直*分两圆的公共弦
53、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
54、三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象.
55、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象.
56、直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,探究是否存在动点构成的三角形是等腰三角形或与已知图形相似等问题.
57、圆的有关性质
58、定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
59、直径(半圆)所对的圆周角是直角;900的圆周角所对的弦为直径。(①常见辅助线:有直径可构成直角,有900圆周角可构成直径;②找圆心的方法:作两个900圆周角所对两弦交点)
60、由绝对值的定义可知:
61、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。
62、有理数中仍然有:乘积是1的两个数互为倒数。
63、对角线相等的菱形;
64、直线外一点与直线上各点连接的所有线段中,垂线段最短。
65、同位角相等,两直线*行。
66、定理2到一个角的两边的距离相同的点,在这个角的*分线上。
67、推论1等腰三角形顶角的*分线*分底边并且垂直于底边。
68、推论2有一个角等于60°的等腰三角形是等边三角形。
69、多边形内角和定理n边形的内角的和等于(n-2)×180°。
70、推论夹在两条*行线间的*行线段相等。
71、*行四边形判定定理2两组对边分别相等的四边形是*行四边形。
72、矩形判定定理2对角线相等的*行四边形是矩形。
73、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线*分一组对角。
74、正方形性质定理2正方形的两条对角线相等,并且互相垂直*分,每条对角线*分一组对角。
75、定理1关于中心对称的两个图形是全等的
76、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点*分,那么这两个图形关于这一点对称。
77、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形。
78、三角形中位线定理三角形的中位线*行于第三边,并且等于它的一半。
79、(2)合比性质:
80、(3)等比性质:
81、相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
82、到两条*行线距离相等的点的轨迹,是和这两条*行线*行且距离相等的一条直线。
83、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
84、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
85、①两圆外离d﹥R+r。
86、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
87、换元法
88、面积法
89、运算顺序:A、高级运算到低级运算;B、(同级运算)从“左”到“右”(如5÷×5);C、(有括号时)由“小”到“中”到“大”。
90、二元一次方程:含有两个未知数的方程并且所含未知项的最高次数是1,这样的整式方程叫做二元一次方程。
91、加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
92、两条*行线被第三条直线所截,如果同旁内角互补,那么这两条直线*行。(同旁内角互补,两直线*行)
93、两条*行线被第三条直线所截,内错角相等。(两直线*行,内错角相等)
94、两条*行线被第三条直线所截,同旁内角互补。(两直线*行,同旁内角相等)
95、*移的性质
96、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)。
97、X轴:水*的数轴叫X轴或横轴。向右方向为正方向。
98、原点:两个数轴的交点叫做*面直角坐标系的原点。
99、点到轴及原点的距离:
100、不等式的解法:
数学知识点 100句菁华(扩展2)
——中考数学知识点 60句菁华
1、直角坐标系中,点A(1,1)在第一象限。
2、函数=4x+1是正比例函数。
3、cs30°=。
4、同圆或等圆的半径相等。
5、长度相等的两条弧是等弧。
6、经过圆心*分弦的直径垂直于弦。
7、直线与圆有唯一公共点时,叫做直线与圆相切。
8、数的分类及概念数系表:
9、已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。
10、整式和分式
11、指数
12、分式的加、减、乘、除、乘方、开方法则
13、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
14、总体:考察对象的全体。
15、个体:总体中每一个考察对象。
16、众数:一组数据中,出现次数最多的数据。
17、角(*角、周角、直角、锐角、钝角)
18、互为余角、互为补角及表示方法
19、公理、定理
20、定义(包括内、外角)
21、特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
22、一般性质(角)
23、定义及一般形式:
24、根的判别式:
25、工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位"1")。
26、几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
27、一元一次不等式组:
28、应用举例(略)
29、对于复杂的几何图形,采用将部分需要的图形(或基本图形)"抽"出来的办法处理。
30、表示方法:⑴解析法;⑵列表法;⑶图象法。
31、用待定系数法求解析式(列方程[组]求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。如下图:
32、特殊角的三角函数值:
33、定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
34、"等对等"定理及其推论
35、五种位置关系及判定与性质:(重点:相切)
36、圆的内接、外切多边形(三角形、四边形)
37、*分已知弧
38、科学的听课方式
39、求与y轴*行线段的中点:|y1—y2|/2
40、抛物线是轴对称图形。对称轴为直线
41、一次项系数b和二次项系数a共同决定对称轴的位置。
42、抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)。
43、图形的对应关系多涉及到三角形的全等或相似问题,对其中可能出现的有关角、边的可能对应情况加以分类讨论。
44、由动点问题引出的函数关系,当运动方式改变后(比如从一条线段移动到另一条线段)是,所写的函数应该进行分段讨论。
45、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
46、5×1.8 就是求 1.5 的 1.8 倍是多少。
47、求近似数的方法一般有三种:(P10)
48、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。
49、解方程原理:天**衡。
50、所有的方程都是等式,但等式不一定都是方程。
51、*行四边形面积公式推导:剪拼、*移
52、梯形面积公式推导:旋转
53、身份证码: 18 位
54、重心和三角形3个顶点组成的3个三角形面积相等。
55、直角坐标系中,点A(3,0)在y轴上。
56、当x=2时,函数y=的值为1.
57、当x=3时,函数y=的值为1.
58、函数y=-8x是一次函数。
59、tan45= 1.
60、直角三角形的三条高交点在一个顶点上。
数学知识点 100句菁华(扩展3)
——数学知识点 50句菁华
1、时针走1大格是(1)小时;分针走1大格是(5)分钟,走1小格是(1)分钟;秒针走1大格是(5)秒钟,走1小格是(1)秒钟。
2、封闭图形一周的长度,就是它的周长。
3、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
4、有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数—大数<0。
5、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
6、乘方的定义:
7、推论:1)在同圆或等圆中,相等的圆周角所对的弧相等。
8、数据1,2,3,4,5的中位数是3.
9、整数和分数统称为有理数。
10、人们通常用一条直线上的点表示数,这条直线叫做数轴。
11、个位满10向十位进1。
12、弄清题意,找出未知数,并用X表示;
13、角
14、除法
15、什么是复名数?
16、什么样的数能被3整除?
17、圆的周长总是直径的三倍多一些。
18、做一做中出现的两个正方形周长的计算,可以放手让学生用自己喜欢的方法去解决。
19、两直线*行,内错角相等
20、三角形内角和定理 三角形三个内角的和等于180°
21、边边边公理(SSS) 有三边对应相等的两个三角形全等
22、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直*分线
23、逆定理 如果两个图形的对应点连线被同一条直线垂直*分,那么这两个图形关于这条直线对称
24、推论 任意多边的外角和等于360°
25、恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
26、圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,*行线,转比例,两端各自找联系。
27、二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线*移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。
28、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。
29、概念:两个运动的物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的行进速度要快些,在前面的行进速度要慢些,在一定时间之内,后面的追上前面的,这类应用题就叫做追及问题;
30、解题公式:追及时间=追及路程÷速度差
31、圆的定义:*面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
32、转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
33、四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
34、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G、F、P、,1845年—1918年,德国数学家先驱,是集合论的创始者,目前集合论的基本思想已经渗透到现代数学的所有领域。
35、忽视零向量致误
36、错位相减求和项处理不当致误
37、数列中的最值错误
38、集合与逻辑:集合的逻辑与运算(一般出现在高考卷的第一道选择题)、简易逻辑、充要条件
39、不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式(经常出现在大题的选做题里)、不等式的应用
40、同类项及其合并
41、指数
42、3空间几何体的表面积与体积
43、直线与*面*行的判定定理:*面外一条直线与此*面内的一条直线*行,则该直线与此*面*行。
44、实数
45、三角形内角和定理:
46、边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等
47、等腰三角形的性质定理
48、矩形判定定理2
49、相交弦定理
50、列方程解应用题的常用公式:
数学知识点 100句菁华(扩展4)
——中考数学知识点 50句菁华
1、一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
2、反比例函数的图象在第一、三象限
3、cs30°=。
4、同弧所对的圆周角等于圆心角的一半。
5、垂直于半径的直线必为圆的切线。
6、过半径的外端点并且垂直于半径的直线是圆的切线。
7、已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│
8、单项式与多项式
9、指数
10、幂的运算性质:① o = ;② ÷ = ;③ = ;④ = ;⑤
11、乘法法则:⑴单×单;⑵单×多;⑶多×多。
12、乘法公式:(正、逆用)
13、线段的中点及表示
14、互为余角、互为补角及表示方法
15、分类:
16、元一次方程组的解法:⑴基本思想:"消元"⑵方法:①代入法
17、定义:a>b、a
18、一元一次不等式的解、解一元一次不等式
19、对应线段…;2.对应周长…;3.对应面积…。
20、添加辅助*行线是获得成比例线段和相似三角形的重要途径。
21、画函数图象:⑴列表;⑵描点;⑶连线。
22、特殊角的三角函数值:
23、依据:①边的关系:
24、俯、仰角:2.方位角、象限角:3.坡度:
25、在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。
26、圆的定义(两种)
27、圆面积公式
28、弧长公式
29、圆柱、圆锥的侧面展开图及相关计算
30、作三角形的外接圆、内切圆
31、作半径
32、科学的听课方式
33、科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)
34、规律方法总结:
35、k,b与函数图像所在象限:
36、抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=—b/2a时,y最小(大)值=(4ac—b^2)/4a。
37、用待定系数法求二次函数的解析式
38、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
39、见直径往往作直径上的'圆周角
40、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准讨论对象,逐一解决。在探讨等腰或直角三角形存在时,一定要按照一定的原则,不要遗漏,最后要综合。
41、函数题目中如果说函数图象与坐标轴有交点,那么一定要讨论这个交点是和哪一个坐标轴的哪一半轴的交点。
42、定义:在Rt△ABC中,∠C=Rt∠,则sinA=;cosA=;tgA=;ctgA=.
43、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。
44、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可 以省略不写。
45、梯形面积公式推导:旋转
46、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)
47、重心到三角形3个顶点距离的*方和最小。
48、直角坐标系中,点A(3,0)在y轴上。
49、反比例函数的图象在第一、三象限。
50、cos60+ sin30= 1.
数学知识点 100句菁华(扩展5)
——初中七年级数学知识点 50句菁华
1、生活中的立体图形
2、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。
3、代数式
4、多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭*面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
5、圆:*面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
6、解一元一次方程的一般步骤:
7、普查与抽样调查
8、扇形统计图
9、整式的乘除的公式运用(六条)及逆运用(数的计算)。
10、整式的乘法公式(两条)。
11、互为余角和互为补角和
12、必然事件不可能事件,不确定事件
13、方法归纳:(1)求边相等可以利用
14、证明:
15、1周角=__________*角=_____________直角=____________.
16、*行线的性质:两直线*行,_________相等,________相等,________互补.
17、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
18、相反数:
19、有理数乘方的法则:
20、近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
21、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
22、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
23、高线、中线、角*分线的意义和做法
24、正数:大于0的数。
25、负数:小于0的数。
26、有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)
27、整数:正整数、0、负整数,统称整数。
28、数轴的三要素:原点、正方向、单位长度。
29、相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。
30、加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。
31、加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。5、a?b=a+(?b)减去一个数,等于加这个数的相反数。
32、乘积是1的两个数互为倒数。
33、乘法结合律:(ab)c=a(bc)
34、整式:单项式和多项式的统称叫整式。
35、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
36、去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
37、若系数是带分数,要化成假分数。
38、在单项式中字母不可以做分母,分子可以。
39、单独的数“0”的系数是零,次数也是零。
40、在直线上任取一个点表示数0,这个点叫做原点(origin)。
41、有理数减法法则
42、一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
43、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的项(term),不含字母的项叫做常数项(constantly
44、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。
45、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
46、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一*面内,它们是立体图形(solidfigure)。
47、角∠(angle)也是一种基本的几何图形。
48、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementary
49、如果两个角的和等于180°(*角),就说这两个角互为补角(supplementary
50、等角的补角相等,等角的余角相等。
数学知识点 100句菁华(扩展6)
——高等数学知识点总结 50句菁华
1、了解函数的奇偶性、单调性、周期性、和有界性。
2、理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求*面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
3、会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
4、熟练运用微分中值定理证明简单命题。
5、了解函数图形的作图步骤。了解方程求近似解的两种方法:二分法、切线法。
6、会求有理函数、三角函数、有理式和简单无理函数的不定积分
7、掌握不定积分的换元积分法。
8、理解定积分的概念,掌握定积分的性质及定积分中值定理。
9、掌握反常积分的运算。
10、掌握用定积分表达和计算一些几何量(*面图形的面积、*面曲线的弧长、旋转体的体积和侧面积、*行截面面积为已知的立体体积)及函数的*均值。
11、掌握一阶线性微分方程的解法,会解伯努利方程.
12、掌握向量的线性运算,掌握单位向量、方向角与方向余弦,掌握向量的坐标表达式掌握用坐标表达式进行向量运算方法。
13、掌握*面方程及其求法,会求*面与*面的夹角,并会用*面的相互关系(*行相交垂直)解决有关问题。
14、理解曲面方程的概念,了解二次曲面方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线*行于坐标轴的柱面方程。
15、了解空间曲线的概念,了解空间曲线的参数方程和一般方程,了解空间曲线在坐标*面上的投影,并会求其方程。
16、列方程解应用题的常用公式:
17、代数式
18、一元二次方程的解法
19、韦达定理
20、一元二次方程根的情况
21、点,线,面
22、直线外一点与直线上各点连接的所有线段中,垂线段最短
23、*行公理:经过直线外一点,有且只有一条直线与这条直线*行
24、同旁内角互补,两直线*行
25、两直线*行,同位角相等
26、推论
27、三角形内角和定理:
28、推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等
29、定理1
30、等腰三角形的性质定理
31、逆定理
32、多边形内角和定理
33、矩形性质定理2
34、菱形判定定理2
35、等腰梯形的两条对角线相等
36、*行线等分线段定理
37、同圆或等圆的半径相等
38、到已知角的两边距离相等的点的轨迹,是这个角的*分线
39、弦切角定理
40、正n边形的面积Sn=pn*rn/2
41、扇形面积公式:S扇形=n兀R^2/360=LR/2
42、数轴:数轴是规定了原点、正方向、单位长度的一条直线。
43、绝对值:
44、互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1?a、b互为倒数;若ab=—1?a、b互为负倒数。
45、有理数乘法的运算律:
46、有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,。
47、混合运算法则:先乘方,后乘除,最后加减。
48、直线与圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系
49、圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用
50、联系:二者之间存在着从属关系;存在条件相同;0的算术*方根与*方根都是0
数学知识点 100句菁华(扩展7)
——五年级数学知识点 30句菁华
1、分母分子相差越大,分数就越接近0;分子接近分母的一半,分数就接近2(1);分子分母越接近,分数就越接近1。
2、分数加、减法混合运算顺序与整数、小数加减混合运算顺序相同。没有小括号,从左往右,依次运算;有小括号,先算小括号里的算式。
3、由曲线围成的图形(圆)不能够密铺。
4、无限小数:小数部分的位数是无限的小数,叫做无限小数。
5、*行四边形面积公式推导:剪拼、*移
6、梯形面积公式推导:旋转
7、等底等高的*行四边形面积相等;等底等高的三角形面积相等;等底等高的*行四边形面积是三角形面积的2倍。
8、除数是整数的小数除法计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
9、除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。
10、积与因数的关系:
11、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。
12、小数除以整数:
13、小数除以小数:
14、5的倍数特征:个位上是0、5的数都是5的倍数
15、在*行四边形里画一个最大的三角形,这个三角形的面积等于这个*行四边形面积的一半。
16、三角形和*行四边形面积相等,高相等,则三角形的底是*行四边形的2倍,*行四边形的底是三角形的一半。
17、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。
18、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的`自然数(或连续的奇数,连续的偶数)的和÷个数=中间数
19、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)
20、5□中最大填()时这个数能被3整除,这个数的约数有()
21、已知a=2×2×3×5b=2×5×7,a和b公有的质因数有(),它们的最大公约数是()
22、一个非0自然数不是质数,就是合数。()
23、大于2的偶数都是合数。()
24、8÷[14-(9.85+1.07)](2.44-1.8)÷0.4×20
25、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。每立方厘米刚重7.8克,这块方钢重多少?
26、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。
27、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
28、在实际应用中,小数除法所
29、3232的循环节是32.
30、事件发生的机会(或概率)有大小。
初中数学知识点总结 100句菁华五年级上册数学知识点 60句菁华中考数学知识点 60句菁华六年级上册数学知识点 60句菁华中考数学知识点 50句菁华二年级上册数学知识点 50句菁华五年级上册数学知识点 50句菁华八年级上册数学知识点 50句菁华六年级上册数学知识点 50句菁华初中七年级数学知识点 50句菁华初中数学知识点总结 50句菁华小学数学知识点 50句菁华数学知识点 50句菁华高等数学知识点总结 50句菁华高中数学知识点总结 50句菁华七年级下册数学知识点 40句菁华七年级下册数学知识点总结 40句菁华三年级上册数学知识点总结 40句菁华二年级下册数学知识点 40句菁华六年级下册数学知识点归纳 40句菁华初一数学知识点归纳 40句菁华小学四年级上册数学知识点总结 40句菁华数学知识点总结 40句菁华高三数学知识点总结 40句菁华高二数学知识点归纳 40句菁华高考数学知识点总结 40句菁华七年级上册数学知识点 30句菁华中考七年级数学知识点 30句菁华五年级数学知识点 30句菁华
祝福宝宝生日的祝福语 150句菁华校园绿色标语 100句菁华简洁的人生感悟语句 100句菁华小满问候语 60句菁华爱的伤感句子 60句菁华端午节包粽子家长寄语 60句菁华迎接三月份的句子 60句菁华除夕祝福语大全简短 60句菁华人生感悟的句子简短的 50句菁华名人名言的座右铭 50句菁华国庆节对祖国祝福语 50句菁华大学新学期开学寄语 50句菁华曾仕强家庭教育语录 50句菁华朋友的劳动节祝福语 50句菁华毕业典礼祝福语简短 50句菁华父亲节通俗的祝福语 50句菁华祝同学生日快乐祝福语 50句菁华端午节的可爱祝福语 50句菁华
经典问候短信 50句菁华虎年带虎字吉祥语 50句菁华2020伤感经典句子 40句菁华mc小洲经典语录 40句菁华一段抒情的话 40句菁华伤感语句想哭,让人痛到心碎 40句菁华六一儿童节快乐祝福句子 40句菁华幸福的古风句子 40句菁华最温馨情人节祝福语 40句菁华月末最后一天说说 40句菁华有内涵的阳光女生签名 40句菁华毕业离别的伤感说说 40句菁华祝福自己生日快乐的说说 40句菁华空调节约用电宣传标语 40句菁华红楼梦人物歇后语 40句菁华给冬奥会运动员加油句子 40句菁华自己过生日发朋友圈的文案 40句菁华虎年新春祝福文案 40句菁华